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a b s t r a c t 

VM consolidation and Dynamic Voltage Frequency Scaling approaches have been proved to be efficient 

to reduce energy consumption in cloud data centers. However, the existing approaches cannot function 

efficiently when the whole data center is overloaded. An approach called brownout has been proposed 

to solve the limitation, which dynamically deactivates or activates optional microservices or containers. 

In this paper, we propose a brownout-based software system for container-based clouds to handle over- 

loads and reduce power consumption. We present its design and implementation based on Docker Swarm 

containers. The proposed system is integrated with existing Docker Swarm without the modification of 

their configurations. To demonstrate the potential of BrownoutCon software in offering energy-efficient 

services in brownout situation, we implemented several policies to manage containers and conducted ex- 

periments on French Grid’50 0 0 cloud infrastructure. The results show the currently implemented policies 

in our software system can save about 10%–40% energy than the existing baselines while ensuring quality 

of services. 

© 2019 Elsevier Inc. All rights reserved. 
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. Introduction 

Cloud computing has been regarded as a new paradigm for

esource and service provisioning, which has offered vital bene-

ts for IT industry by lowering operational costs and human ex-

enses. However, the huge amount of energy consumption and

arbon emissions resulted from cloud data centers have become

 significant concern of researchers. Nowadays, data centers con-

ain thousands of servers and their sizes range from 30 0–450 0

quare meters, which can consume more than 27,0 0 0 kWh energy

er day ( Mastelic et al., 2015 ). It is estimated that, in 2010, the en-

rgy consumption of data centers consumed 1.1% to 1.5% of total

lectricity worldwide ( Mastelic et al., 2015 ). Moreover, the exces-

ive usage of brown energy to generate power increases the car-

on emission. It is also reported that about 2% carbon emissions of

otal carbon amount released into the atmosphere worldwide are

rom data centers ( Lavallée, 2014 ). Recently, some dominant ser-

ice providers have established a community, called Green Grid, to

romote energy-efficient techniques to minimize the environmen-

al impact of data centers ( Beloglazov et al., 2012 ). 
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Unfortunately, reducing energy consumption is a challenging

ission as applications and data are growing complex and con-

uming more computational resources ( Liu et al., 2012 ). The ap-

lications and data are generally required to be processed within

he required time, and to meet this requirement large and pow-

rful servers are provisioned. To ensure the sustainability of fu-

ure growth, cloud data centers are required to utilize the re-

ource computing infrastructure efficiently and minimize energy

onsumption. To address this problem, the concept of green cloud

as proposed, which aimed to reduce power consumption, energy

ost, carbon emissions and also optimize renewable energy usage

 Kong and Liu, 2015; Buyya et al., 2018 ). Therefore, in addition to

esource provisioning and Quality of Service (QoS) assurance, data

enters are required to be energy-efficient. 

The dominant methods to improve resource utilization and re-

uce energy consumption are Virtual Machine (VM) consolidation

 Beloglazov et al., 2012 ) and Dynamic Voltage Frequency Scaling

DVFS) ( Kim et al., 2011 ). The VM consolidation method migrates

Ms from underutilized hosts to minimize the number of active

osts, and the idle hosts are switched to low-power mode to save

nergy consumption. The DVFS method reduces energy usage by

ynamically scaling voltage frequency. When the host is underuti-

ized, the voltage frequency scales to a lower frequency to reduce

ower. These approaches have been proved to be efficient to save

ata center’s power consumption, however, when the whole data

https://doi.org/10.1016/j.jss.2019.05.031
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
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1 See http://www.wikibench.eu/wiki/2007-10/ for more details. 
center is overloaded, both of them cannot function efficiently. For

example, the VMs can not be migrated if all the hosts are over-

loaded. 

In data centers, another reason for high energy consumption

lies in that computing resources are inefficiently utilized by ap-

plications. Thus, applications are currently built with microservice

paradigm in order to utilize resources more efficiently. Microser-

vice is referred as a set of self-contained application components.

The components encapsulate their logic and expose their function-

ality via interfaces to enable flexible deployment and replacement.

With microservices or components, developers and users can gain

technological heterogeneity, resilience, scalability, ease of deploy-

ment, organizational alignment, composability and optimization

for replaceability ( Newman, 2015 ). In addition, microservices also

brings the benefits of more fine-grained utilization control over the

application resource. 

To overcome the limitations of VM consolidation and DVFS, as

well as improve the utilization of applications, we take advan-

tage of brownout, a paradigm inspired from voltage shutdown to

cope with emergency cases, in which the light bulbs emit fewer

lights to save power ( Xu and Buyya, 2019 ). Brownout is also ap-

plied to cloud scenarios, especially for microservices or applica-

tion components that are allowed to be shortly deactivated to en-

hance system robustness. In brownout-compliant microservices, a

control knob called dimmer is used to show the probability that

whether a microservice should be executed or not ( Klein et al.,

2014 ). When requests are bursting and the system becomes over-

loaded, the brownout is triggered to temporally degrade the user

experience, so that relieving the overloaded situation as well as

saving energy consumption. 

Microservices can be featured with brownout characteristic. An

example of online shopping system with a recommendation en-

gine is introduced in ( Klein et al., 2014 ). The recommendation en-

gine enhances the function of the system and increases profits

via recommending products to users. However, because the en-

gine is not the necessary component and it requires more re-

sources in comparison to other components, it is not mandatory

to keep running all the time, especially under the overloaded situ-

ation when requests have a long delay or even not served. Deacti-

vating the engine enables service providers to serve more requests

with essential requirements or QoS constraints. Apart from this ex-

ample, brownout paradigm can also be applied to other systems

that allow application components to be deactivated, especially for

the container-based system that applications are built with mi-

croservice paradigm. With container technology, the microservices

can be functionally isolated, thus the deactivation of some mi-

croservices will not influence other microservices. In addition, as

microservices are light-weight, they can be deactivated/activated

quickly to support the brownout approach. 

In this paper, we propose and develop a software system, called

BrownoutCon , which is inspired by brownout-based approach to

deliver energy-efficient resource scheduling. The implementation

of BrownoutCon is based on Docker Swarm ( Docker, 2017 ) that

provides the management of container cluster. The software sys-

tem is designed and implemented as an add-on for Docker Swarm,

which has no necessity to modify the configurations of Docker

Swarm. The system also applies the public APIs of Grid’50 0 0

(2017) , which is a real testbed that provides power measurement

for hosts. The aims of BrownoutCon are twofold: (1) providing

an open-source software system based on brownout and Docker

Swarm to manage containers; (2) offering an extensible software

system for conducting research on reducing energy consumption

and handling overloads in cloud data centers. 

The BrownoutCon is designed and implemented by following

the brownout enabled system model in our previous works ( Xu

et al., 2016; Xu and Buyya, 2017 ). Mandatory containers and op-
ional containers are introduced in the system model, which are

dentified according to whether the containers can be temporar-

ly deactivated or not. The brownout controller is the key part of

he system model to manage brownout, which also provides the

cheduling policies for containers. The problem of designing the

rownout controller splits into several sub-problems: 

1. Predicting the future workloads, so that the system can avoid

overloads to foster the system robustness. 

2. Determining whether a host is overloaded or not, so that the

brownout controller will be triggered to relieve the overloads. 

3. Deciding when to disable the containers, so that the system can

relieve overloads and reduce energy consumption while ensur-

ing QoS constraints. 

4. Selecting the containers to be disabled, so that a better trade-

off can be achieved between the reduced energy and QoS con-

straints. 

5. Deciding when to turn the hosts on or into the low-power

mode, so that the idle hosts can be switched into low-power

mode to save power consumption. 

Compared with VM consolidation approaches, the software sys-

em based on brownout and containers has two advantages: (1) a

ontainer can be stopped or restarted in seconds, while VM migra-

ion may take minutes. Thus, scheduling with containers is more

ight-weight and flexible than VMs. (2) the brownout-based ap-

roach provides another optional energy-efficient approach apart

rom VM consolidation and DVFS, which is also available to be

ombined with VM consolidation to achieve better energy effi-

iency, especially for the situation when the whole data center is

verloaded. 

To evaluate the proposed system in practice, we conduct our

xperiments on Grid’50 0 0 (2017) real testbed. We also evaluate

he performance of proposed system with real traces derived from

ikipedia 1 workloads. 

The main contributions of our work are as follows: 

• Proposed an effective system model that enables brownout

approach to manage the containers and resources in a fine-

grained manner; 
• Designed and developed a software system based on Docker

Swarm to provide energy-efficient approaches for cloud data

centers; 
• Experimental evaluations of our proposed software system on

French Grid’50 0 0 infrastructure for service providers to deploy

microservices in an energy-efficient manner while ensuring QoS

constraints. 

The rest of the paper is organized as follows. Section 2 dis-

usses the related work, followed by the system design and im-

lementation in Section 3 . Brownout-based policies implemented

n BrownoutCon are presented in Section 4 . In Section 5 , we in-

roduce our experiments setup and evaluate the performance of

mplemented policies under Grid’50 0 0 testbed. Conclusions along

ith future work are presented in Section 6 . 

. Related work 

It is estimated that U.S. data centers will consume 140 billion

Wh of electricity annually by the year 2020, which equals to the

nnual output of about 50 brown power plants that have high car-

on emissions ( Delforge, 2014; Bawden, 2016 ). To minimize the op-

rational expenses and impacts on the environment, a variety of

tate-of-the-art works have been conducted to reduce data center

nergy consumption. 

http://www.wikibench.eu/wiki/2007-10/
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There is a close relationship between resource utilization and

nergy consumption, as inefficient utilization of resource con-

ributes to more power consumption ( Kaur and Chana, 2015 ). Vir-

ualization is an import technique in Clouds and it can improve

esource utilization. Therefore, numerous energy-efficient resource

cheduling approaches based on VM consolidation have been pro-

osed. Consolidating VMs on fewer physical machines and turning

he unused machines into the low-power mode reduce the num-

er of active machines. Beloglazov et al. (2012) proposed several

M consolidation algorithms to save data center energy consump-

ion. The VM consolidation process has been modeled as a bin-

acking problem, where VMs are regarded as items and hosts are

egarded as bins. The objective of these VM consolidation algo-

ithms is mapping the VMs to hosts in an energy-efficient man-

er. Based on the VM consolidation approaches in this work, other

orks like ( Belog1azov and Buyya, 2012; Chen et al., 2015; Han

t al., 2016 ) have extended them to improve algorithm perfor-

ance. Zhang et al. (2019) proposed VM allocation algorithm based

n evolution algorithm to achieve energy efficiency in cloud data

enters for reserved services. Experiments under both simulation

nd realistic environments showed that the proposed approach can

ffectively reduce energy consumption for a set of reserved VMs.

i et al. (2017) developed a Bayesian network-based estimation

odel for VM consolidation and took nine data center factors into

onsideration. The proposed approach can reduce energy consump-

ion while ensuring QoS by avoiding inefficient VM migrations. 

Another dominant approach to reduce energy consumption is

ynamic Voltage Frequency Scaling (DVFS). The DVFS approaches

chieve energy reduction by adjusting frequencies of processors

ather than using less active servers in VM consolidation. The DVFS

pproach investigates a trade-off between energy consumption and

omputing performance, where processors lower their frequency

hen they are lightly loaded and utilize full frequency when loads

re heavy. 

Kim et al. (2011) modeled real-time service as real-time VM

equests, and proposed several DVFS algorithms to reduce energy

onsumption for the DVFS-enabled cluster. Arroba et al. (2015) pro-

osed an approach combines DVFS and VM consolidation tech-

iques by considering energy consumption and performance

egradation together. Teng et al. (2016) presented several heuris-

ic algorithms combining DVFS and VM consolidation together for

atch-oriented scenarios. Fan et al. (2017) presented an online

nergy management approach by dynamically configuring voltage

requencies to minimize the power consumption for single pro-

essor scheduling while ensuring reliability requirement. All these

pproaches are focusing on developing algorithms for energy effi-

iency purposes. 

Some research taking both energy consumption and QoS into

ccount have been conducted, which is also the consideration of

ur proposed software prototype system. Dou et al. (2016) in-

roduced an energy-aware dynamic VM scheduling approach for

oS enhancement in Clouds for big data, which aimed to benefit

sers with discount prices and reduce the execution time of tasks.

dhikary et al. (2017) developed a QoS-aware and energy-aware

loud resource management approach for multimedia applications,

nd proposed two distributed and localized resource management

lgorithms based on energy consumption and resource demands. 

VM consolidation and DVFS have been proven to be efficient

o reduce energy consumption in both theory and practice, how-

ver, both of them cannot function well when the whole data cen-

er is overloaded. Thus, brownout is applied to handle data center

verloads and reduce energy consumption. Klein et al. (2014) ap-

lied brownout to design more robust applications under the over-

oaded or unpredicted situation. In our previous work, brownout

as applied to save energy consumption in data centers. In

u et al. (2016) , we presented the brownout enabled system model
nd proposed several heuristic policies to find the microservices or

pplication components that should be deactivated for energy sav-

ng purpose. The results showed that a trade-off existed between

nergy consumption and discount, and in Xu and Buyya (2017) ,

e adopted approximate Markov Decision Process to improve the

rade-off. 

Compared to the existing energy-efficient approaches based on

Ms, our software system is based on containers. Container tech-

ology is derived from the Linux LXC techniques ( Bernstein, 2014 ),

hich provides mechanism to isolate processes on a shared op-

rating system. Compared with VMs, containerization provides a

ne-grained control on microservice resource usage and is more

ight-weight. Kozhirbayev and Sinnott (2017) compared several ex-

sting container-based technologies for Clouds and evaluated their

trength and weakness. They concluded that containers can give

lmost the same performance of native systems. As the main rea-

on of the energy consumption issue in clouds is due to the in-

fficient resource usage, and containers can provide a more fine-

rained control on resources compared with VMs, we consider to

pply container technology for energy efficiency purposes. 

Currently, container technology is mostly focused on the or-

hestration of construction and deployment for containers ( Pahl

t al., 2017; Rodriguez and Buyya, 2018 ), and it has been applied

or various purposes, such as scalability ( Hightower et al., 2017 ),

igh availability ( Naik, 2016 ), high utilization ( Vavilapalli et al.,

013 ), high throughput ( Schwarzkopf et al., 2013 ), and QoS

 Boutin et al., 2014 ). For example, Liu et al. (2016) proposed a

exible container-based computing platform for scientific work-

ow. Baresi et al. (2016) introduced MicroCloud, which is a

ontainer-based solution for managing cloud resource efficiently.

antos et al. (2018) evaluated the energy consumption of different

pplications executed in Docker and bare metal. However, the en-

rgy efficient scheduling is not considered in these container-based

ork. 

In our previous work ( Xu et al., 2018 ), we have proposed an ap-

roach for managing energy in container-based clouds while focus-

ng on scheduling algorithms design. Whereas, in this paper, we fo-

us on the design and development of a new software system sup-

orting brownout-based energy-efficient management of clouds. 

Some of the software systems supported energy-efficient

esource management in Clouds, including OpenStack Neat

 Beloglazov and Buyya, 2015 ), Parasol ( Goiri et al., 2013 ) and

Green ( Dhiman et al., 2009 ). However, none of them support

rownout. 

Table 1 shows the comparison of related work. To the best of our

nowledge, BrownoutCon is the first software system developed to

educe energy consumption with brownout based on containers,

hich also considers both energy consumption and QoS. 

. System architecture, design and implementation 

The purpose of BrownoutCon is to provide a software sys-

em based on brownout and containers for energy-efficient cloud

ata centers. The system takes advantage of public APIs of Docker

warm and is evaluated under Grid’50 0 0 testbed. The system is

esigned to be extensible, which means new components can be

dded without the necessity to modify the original codes or con-

gurations of Docker Swarm and Grid’50 0 0. 

Our software system is deployed on Docker Swarm master

nd worker nodes. Docker Swarm provides a platform for man-

ging container cluster, monitoring status of swarm master and

orker nodes, deploying containers on nodes, collecting resource

sage of containers, controlling the lifecycle of containers, sending

essages and commands between the master and worker nodes.

ocker Swarm needs to be deployed on physical machines or vir-

ual machines. Therefore, we adopt Grid’50 0 0, a real testbed that
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Table 1 

Comparison of related work 

Approach Key Technique Management Unit Optimization Objective Focus 

DVFS VM Consol- 

idation 

Brownout Processor Host VM Container Energy QoS/SLA Algorithm 

Design 

Software 

System 

Beloglazov et al. (2012) ; 

Belog1azov and Buyya 

(2012) 

√ √ √ √ √ √ 

Chen et al. (2015) 
√ √ √ √ √ √ 

Han et al. (2016) 
√ √ √ √ √ √ 

Zhang et al. (2019) 
√ √ √ √ √ √ 

Li et al. (2017) 
√ √ √ √ √ √ 

Kim et al. (2011) 
√ √ √ √ √ 

Arroba et al. (2015) 
√ √ √ √ √ √ √ √ 

Teng et al. (2016) 
√ √ √ √ √ √ √ √ 

Fan et al. (2017) 
√ √ √ √ √ 

Dou et al. (2016) 
√ √ √ √ √ √ 

Adhikary et al. (2017) 
√ √ √ √ √ √ 

Klein et al. (2014) 
√ √ √ 

Xu et al. (2016) Xu and 

Buyya (2017) 

√ √ √ √ √ √ √ 

Liu et al. (2016) 
√ √ √ 

Baresi et al. (2016) 
√ √ √ 

Xu et al. (2018) 
√ √ √ √ √ √ 

Beloglazov and Buyya 

(2015) 

√ √ √ √ √ √ 

Goiri et al. (2013) 
√ √ √ 

BrownoutCon 
√ √ √ √ √ √ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. BrownoutCon architecture. 
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provides access to ample resources for Docker Swarm deployment.

We also take advantage of the Grid’50 0 0 APIs to collect the energy

consumption data of the machines. In the following sections, we

discuss the system requirements, assumptions, system design and

its implementation. 

3.1. Requirements and assumptions 

The components of the proposed software prototype system are

running on the Docker Swarm master and worker nodes. Our cur-

rent implementation assumes that a single instance of each key

components is invoked on the master node, such as components

for controlling brownout, monitoring system status, managing de-

ployment policies and managing models. On each worker node, a

single instance of a component that collects node information is

running. When new nodes are joining the Docker Swarm as worker

nodes, the master node is responsible for deploying containers to

the nodes. 

BrownoutCon saves the energy consumption and handles over-

loads via temporarily disabling some containers, therefore, we as-

sume that the services in the target system (e.g. e-commerce sys-

tem) are implemented with microservice paradigm and some ser-

vices (e.g. recommendation engine service) are not necessary to

keep running all the time. 

The main optimization objective of our software system is re-

ducing energy consumption, a precise power probe to collect en-

ergy usage is required. Container scheduling policies may use the

energy usage data to make decisions on controlling containers. 

Another requirement is that a manager is needed to control

all the hosts to turn them into low-power mode or active. This

manager is used by the brownout controller on master node to

connect with other worker nodes via the communication protocol.

Grid’50 0 0 has provided the APIs to switch the status of hosts, and

more details will be introduced in the following sections. 

3.2. BrownoutCon architecture 

Fig. 1 depicts the architecture of BrownoutCon, and the details

of the main components are introduced as below: 
(1) Users: This component contains user and requests informa-

ion. It also captures system configurations such as predefined QoS

onstraints (e.g. average response time and SLA violations), energy

udget and service deployment patterns according to users’ de-

and. 

(2) Cloud service repository: This component manages the ser-

ices offered to users, including service information, such as ser-

ice name and image. Each service may be constructed via a set

f microservices. In order to manage microservices with brownout,

he microservices are identified as mandatory or optional. 
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Fig. 2. Energy-efficient scheduling architecture. 

Fig. 3. BrownoutCon integrated with Docker Swarm. 
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a. Mandatory microservices: These microservices keep running

ll the time when they are started and cannot be temporarily

topped, like database related microservices. 

b. Optional microservices: These microservices can be deacti-

ated temporarily depending on system status. Microservices are

onnected if there are communications between them. We con-

ider that if one optional microservice is deactivated, then other

onnected microservices should also be deactivated. 

Notes: A microservice can be identified as optional if the ser-

ice/content it provides is defined as optional by its creators. For

nstance, the online recommendation engine in the online shop-

ing system and the spell checker in the online editor system can

e identified as optional microservices under resource constrained

ituations. 

( 3) Execution environment: This component provides the

ontainer-based environment for microservices or containers. The

ominant execution environments for microservices or contain-

rs are Docker, Kubernetes, and Mesos. In BrownoutCon, we use

ocker as the execution environment for microservices. 

(4) Brownout controller: This component controls optional mi-

roservices or containers based on system status. It applies policies

ntroduced in Section 4 to provide an efficient solution for manag-

ng brownout and containers. As noted in Section 1 , brownout has

 control knob called dimmer that represents the probability to ex-

cute microservices. We make some adjustments to make the dim-

er of brownout to be adapted to this component as well as our

rchitecture. Our dimmer is only applied to the optional microser-

ices and its value is computed according to the severity of system

verloads (the number of overloaded hosts in the data center). 

(5) System monitor: It is a component that monitors the health

f nodes and collects hosts resource consumption status. It uses

he third-party toolkit to support its function, such as Grid’50 0 0

ublic APIs that provide real-time data on infrastructure metrics,

ncluding host health, CPU utilization, and power consumption. 

( 6) Scheduling policy manager: This component provides and

anages the policies for Brownout Controller to schedule mi-

roservices/containers. In order to ensure the energy budget and

oS constraints, different policies designed for different prefer-

nces are required. For instance, if the service provider wants to

alance the trade-off between energy and QoS, then a policy that

onsiders the trade-off is preferred. 

( 7) Models management: This component maintains the energy

onsumption and QoS models in the system. In BrownoutCon, the

ower consumption model is closely related to the utilization of

icroservice or container, and the QoS model is applied to define

he QoS constraints. 

( 8) Cloud infrastructure: Under Infrastructure as a Service model,

t is a component that offers physical resources to users, where mi-

roservices or containers are deployed. In our experiments, we use

rid’50 0 0 as our infrastructure. More details are given in Section 5 .

.3. Energy-efficient scheduling architecture 

The main purpose of our software system is energy efficiency,

nd the main approach to achieve this goal is through energy-

fficient scheduling policies. Deriving from BrownoutCon archi-

ecture, Fig. 2 shows the energy-efficient scheduling architecture

ased on brownout, which depicts the BrownoutCon from the

nergy-efficient scheduling perspective. 

In this scheduling architecture, clients submit their requests to

he system, and Docker Swarm Manager dispatches the requests to

ontainers and hosts. The System Monitors collect the energy and

tilization information from hosts, and then send the information

o Brownout Controller. With the information from System Mon-

tors, the Brownout Controller refers to the host power consump-

ion or utilization models to compute how much utilization/energy
hould be reduced. Then the Brownout Controller makes decisions

ased on scheduling policies to switch the states of hosts and con-

ainers, such as turning the hosts into low-power mode or deacti-

ating containers. 

.4. Integration with Docker Swarm 

BrownoutCon is installed on Docker Swarm node independently

f Docker Swarm services. In addition, the activities of Brownout-

on are transparent to the Docker Swarm services, which means

ocker Swarm does not need to reconfigure to fit with Brownout-

on and use its brownout feature. In other words, BrownoutCon

an be installed on existing Docker Swarm cluster without modi-

ying the configurations. 

BrownoutCon achieves the transparency via the interactions

ith the public APIs of Docker Swarm cluster. BrownoutCon uses

he APIs to obtain information about containers deployment, con-

ainers utilization, and containers properties. Although the opera-

ions of BrownoutCon will affect the system status and contain-

rs state by deactivating or activating containers, it is transparently

rocessed by Docker Swarm public APIs. 

The implication of this integration approach represents that the

ontainer deployment is handled by Docker Swarm, and Brownout-

on makes decisions on deactivation or activation of containers.

ig. 3 shows how BrownoutCon is integrated into Docker Swarm.

n Docker Swarm, the nodes are categorized as two classes: swarm

aster node and swarm worker node. The master node is respon-

ible for maintaining cluster state, scheduling services (contain-

rs) and serving swarm mode with Docker APIs over HTTP, while

he purpose of worker nodes is executing containers. The respec-

ive BrownoutCon components are deployed on master and worker

odes. 
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Fig. 4. Entity interactions in BrownoutCon. 
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3.5. Containers deployment with compose file 

Docker provides compose 2 tool to deploy multiple containers,

in which a configuration file is used to configure containers prop-

erties. With the compose file, the containers can be easily deployed

and managed on clusters. In the compose file of our web applica-

tion, to identify the recommendation engine microservice as op-

tional, we labeled it as optional in the brownout feature. Moreover,

as previously mentioned, the optional containers are only allowed

to be deployed on the worker node, thus, we configure the place-

ment constraint of this microservice as the worker node. More de-

ployment properties can also be configured in the compose file. 

3.6. Entity interaction diagram 

To implement the aforementioned architecture and functionali-

ties, we use Java to develop our software system. The main classes

of BrownoutCon are depicted in Fig. 4 . The details of these classes

are as below: 

Docker Swarm API: This class wraps Docker Swam APIs and pro-

vides the interface for BrownoutController class to call. The Docker

Swarm APIs offer the functions to fetch the information of contain-

ers and operate on containers, such as collecting containers utiliza-

tion, containers id, containers property (optional or mandatory),

deploying and updating containers with the compose file, deacti-

vating and activating containers. 

Grid’50 0 0 API: This class uses Grid’50 0 0 APIs to collect hosts en-

ergy consumption and switch status of hosts. Grid’50 0 0 provides

APIs to gather the total power at per second rate for all the hosts

in data center. The APIs also allow BrownoutController class to

switch the hosts into low power mode or turn the hosts on. 

WorkerNode: This class models the host in the data center. At-

tributes of a WorkerNode include the CPU utilization and the con-

tainers deployed on the host. To be consistent with the status of

real hosts, when the software system is running, the WorkerNode

instances will keep updating their CPU utilization and container

lists. 

AbstractMonitor: It provides an interface to monitor the status

system. With the monitored information, the system can know

how many hosts are overloaded and make decisions based on this

information. Other monitors, such as memory or network monitors

can be extended if they implement the AbstractMonitor. 

Container: The Container class models the containers deployed

on hosts. The class defines the basic information of containers, in-

cluding container id, CPU utilization and other information that

can be fetched via Docker Swarm APIs. 
2 See https://docs.docker.com/compose/compose-file/ for more details. 

I  

t  

t

AbtractPolicy: It is an interface that defines the functions that

cheduling policies should implement. To deactivate some contain-

rs temporarily and reduce energy consumption, the policies that

mplement the AbstractPolicy interface are responsible for finding

he containers that should be deactivated. The details of our imple-

ented policies in BrownoutCon will be introduced in Section 4 . 

BrownoutController: This class is the core class of our software

ystem. It assembles all the information from different sources

nd makes the decision for controlling hosts and the containers

n them. BrownoutController knows system status from Docker

warm APIs, Grid’50 0 0 APIs and WorkerNode instances, and trig-

ers brownout to handle overloads and reduce energy consump-

ion via operations on hosts or containers. 

.7. Sequence diagram 

To provide an in-depth understanding of the working process

f BrownoutCon, Fig. 5 shows a sequence diagram of handling

equests by our software system. Firstly, the users submit their

equests to a web application called Weave Shop (more details

bout this application will be introduced in Section 5.2 ) Then the

eave Shop sends the information of requests to BrownoutCon,

nd BrownoutCon keeps collecting nodes and containers informa-

ion periodically via Grid’50 0 0 and Docker Swam public APIs, re-

pectively. When BrownoutCon is collecting information, if the sys-

em is overloaded, which means the Weave Shop cannot handle

ll the incoming requests, the BrownoutCon adds nodes to serve

equests. The BrownoutCon also triggers brownout-based policies

o deactivate containers to relieve overloads and reduce energy

onsumption. After these operations, the information of the nodes

nd containers are updated. Once the system is not overloaded,

rownoutCon activates the containers or removes the nodes from

ctive nodes list (switching nodes into low-power mode). Upon the

ompletion of operations on containers and nodes, the updated in-

ormation is sent to BrownoutCon. 

. Policies implemented in BrownoutCon 

To demonstrate BrownoutCon software system capability, we

lugged/incorporated some policies originally evaluated by simu-

ations in Xu et al. (2016) . As noted in Section 1 , the scheduling

roblem can be divided into several sub-problems: (1) workload

rediction; (2) overloaded status detection (3) brownout trigger;

4) deactivated containers selection; and (5) hosts scaling. In this

ection, we will introduce the implemented policies for reference.

t is noted that the introduced policies are not the main focus of

his paper. The focus of this work is designing and implementing

he software system based on brownout and containers. 

https://docs.docker.com/compose/compose-file/
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Fig. 5. Sequence diagram of handling requests by BrownoutCon. 
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.1. Workload prediction 

We apply workload prediction to avoid overloads and improve

ystem robustness. To predict the future workloads based on the

revious workloads, we adopt the sliding windows as presented

n Algorithm 1 . The motivation of sliding windows is giving more

lgorithm 1 Algorithm for predicting future workload based on

liding windows. 

nput: sliding window size L w 

, the number of requests at previous

L w 

time intervals, the predicted time interval t ( t ≥ L w 

) 

utput: the predicted number of requests ˆ num (t) at time interval

t 

1: for k from t − L w 

to t − 1 do 

2: ˆ num (k + 1) ← ˆ num (k ) + num (k ) 

3: end for 

4: ˆ num (t) ← ˆ num (k + 1) /L w 

5: return ˆ num (t) 

eights to the request rates of recent time intervals. Let L w 

to be

he window size that is a constant integer value, e.g. 5, num ( k )

o be the actual number of requests at time interval k , we esti-

ate the number of requests at the time interval t as the aver-

ge number of requests in the previous L w 

windows as shown in

q. (1) . To ensure enough historical data to be used for prediction,

he time interval t for requests prediction should be no less than

he window size L w 

, for instance, if the window size L w 

= 5 , the

ime interval for requests predication can start from 5. The pre-

icted number of requests ˆ num (5) at time interval 5 equals to the

verage number of actual requests of num (0) , num (1) , . . . , num (4) .

he sliding window is moving forward along with the time.
ased on the predicted workloads, the number of active hosts can

e dynamically scaled in and out, which will be introduced in

ection 4.5 . The performance of Algorithm 1 will be evaluated in

ection 5.1 . 

ˆ um (t) = 

1 

L w 

t−1 ∑ 

k = t−L w 

num (k ) (1) 

.2. Overloaded host detection 

In our experiments, we use a predefined overloaded threshold

o detect whether a host is overloaded or not. For instance, if the

verloaded threshold is defined as 85%, the host is regarded as

verloaded when its CPU utilization is above 85%. Currently, we

nly adopt CPU utilization to detect the overloaded host. 

Eqs. (2) and (3) show the way to calculate the number of the

verloaded host. We use n o 
i 

to denote whether host i is overloaded

r not, which is detected by the utilization u i and overloaded

hreshold T u . If u i is no less than T u , n o 
i 

equals to 1, otherwise it

quals to 0. The total number of the overloaded host is denoted as

 o , which is the sum of n o 
i 

for all the hosts. 

 

o 
i = 

{
1 , i f u i ≥ T u 
0 , i f u i < T u 

(2) 

 o = 

n −1 ∑ 

i =0 

n 

o 
i (3) 

.3. Brownout trigger 

Once there are hosts detected as overloaded, the brownout

echanism will be triggered to handle the overloads as well as



98 M. Xu and R. Buyya / The Journal of Systems and Software 155 (2019) 91–103 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2 Lowest Utilization Container First policy (LUCF). 

Input: the number of hosts n in data center, overloaded threshold 

T u , deactivated container list dcl i on host i , the optional con- 

tainer list ocl i of host i , which is sorted based on utilization of 

containers u c 
j 

in ascending order, deactivated tag set S, connec- 

tion tag T c 
j 

of container c j 

Output: deactivated container list dcl i 
1: for i ← 0 to n − 1 do 

2: if u i > T u then 

3: if u c 
0 

≥ u r 
i 

then 

4: add c 0 into dcl i 
5: add T c 

0 
into S 

6: end if 

7: for c j in ocl i ( j = 0, 1, 2, …, ocl i .size () − 1 ) do 

8: if (u c 
j 

≤ u r 
i 
) & (u dcl 

i 
≤ u r 

i 
) then 

9: add c j into dcl i 
10: add T c 

j 
into S 

11: minimize | u r 
i 
− u dcl 

i 
| 

12: end if 

13: end for 

14: for c j in ocl i ( j = 0, 1, 2, …, ocl i .size () − 1 ) do 

15: if T c 
j 

in S then 

16: add c j into dcl i 
17: end if 

18: end for 

19: end if 

20: deactivate containers in dcl i 
21: end for 

22: return dcl i 

o  

o

d  
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5

to reduce energy consumption. As noted in Section 1 , firstly, the

algorithm is required to calculate the dimmer value, which is the

control knob to represent the probability to trigger brownout on

hosts. The dimmer value θ t at time t is calculated based on the

number of overloaded hosts n o as shown in Eq. (4) : 

θt = 

√ 

n o /n (4)

Then the algorithm computes the expected utilization reduction

on overloaded hosts. The expected utilization reduction u r 
i 

of host

i is the product of dimmer value θ t and the host utilization u i as:

u 

r 
i = θt × u i (5)

4.4. Deactivated containers selection 

Based on the expected utilization reduction, the policies se-

lect containers to deactivate based on different containers selec-

tion policies. In BrownoutCon, we have implemented three con-

tainers selection policies for deactivation. Based on the strategy de-

sign pattern 

3 , these policies implement the AbstractPolicy interface

in Fig. 4 and can be selected independently at runtime. 

4.4.1. Lowest utilization container first policy 

The Lowest Utilization Container First (LUCF) policy selects a set

of containers to reduce the utilization of overloaded hosts. The ob-

jective of LUCF is that the utilization after reduction is expected to

be less than the overloaded threshold, and the difference between

the expected utilization reduction and the sum of deactivated con-

tainers utilization is minimized. Thus, the host utilization is re-

duced and the reduced utilization is close to the expected reduc-

tion. The deactivated container list is defined in Eq. (6) . We use u 
′ 
i 

to denote the utilization of host i after the containers in the deacti-

vated lists are deactivated, which equals to u i − u dcl 
i 

. The utilization

of all the containers in dcl i is denoted as u dcl 
i 

. The min (| u r 
i 
− u dcl 

i 
| )

represents the to minimize the absolute value of u i − u dcl 
i 

. 

dcl i = 

{{ u 

′ 
i 
≤ T u , min (| u 

r 
i 
− u 

dcl 
i 

| ) } , i f u i ≥ T u 
∅ , i f u i < T u 

(6)

Algorithm 2 presents the pseudocode of LUCF. The LUCF sorts

the optional containers list ocl i based on container utilization in

ascending order so that the container with the lowest utilization is

at the head of the list. The size of ocl i is ocl i .size (). The algorithm

checks the hosts one by one, if the first container c 0 on host i has

the utilization greater than u r 
i 
, c 0 is put into the deactivated con-

tainer list dcl i . Since we consider connected microservices, the pol-

icy also adds the container’s connection tag T c 
0 

(a string value) that

indicates how it is connected with other containers into a set S for

recording connections. However, if the utilization of the first con-

tainer is less than the expected utilization reduction, LUCF finds a

containers sublist to deactivate more containers. The sublist is the

one that has the sum of utilization that is closest to the expected

utilization reduction than other sublists. Same as previous opera-

tions, these containers are put into the deactivated container list

dcl i and their connection tags are put into the set S . Then, the al-

gorithm finds other connected containers and put them into the

deactivated container list. 

4.4.2. Minimum number of containers first policy 

As formalized in Eq. (7) , in order to deactivate fewer containers

so that more optional functionalities can be provided, we also im-

plement Minimum Number Containers First (MNCF) policy, which

selects the minimum number of containers while saving the power

consumption. Since it is quite similar to the LUCF, the pseudocode
3 See https://en.wikipedia.org/wiki/Strategy _ pattern for more details. 

 

s  
f MNCF is not provided here. The min ( dcl i .size ()) represents the

bjective to minimize the size of the deactivated container list. 

 cl i = 

{{ u 

′ 
i 
≤ T u , min (d cl i .size ()) } , i f u i ≥ T u 

∅ , i f u i < T u 
(7)

.4.3. Random container selection policy 

Based on a uniformly distributed discrete random variable

 that selects a subset of dcl i randomly, the Random Con-

ainer Selection (RCS) policy uses uniform distribution function

(0 , ocl i .size () − 1) } to randomly select a number of optional con-

ainers to reduce energy consumption, as presented in Eq. (8) . 

cl i = 

{{ u 

′ 
i 
≤ T u , X = U(0 , ocl i .size () − 1) } , i f u i ≥ T u 

∅ , i f u i < T u 
(8)

.5. Hosts scaling 

To scale the number of active hosts, we adopt the hosts scaling

lgorithm in ( Toosi et al., 2017 ) as shown in Algorithm 3 , which

s a predefined threshold-based approach. With profiling experi-

ents, we set the overloaded requests threshold as the number of

equests when the host cannot respond within an acceptable time

imit. The algorithm computes the required hosts as the predicted

umber of request divided by the profiling number of requests of

he overloaded threshold. If the required number of hosts is more

han current active hosts, more hosts will be added to provide ser-

ices, otherwise, if current active hosts are adequate, then the ex-

ess machines can be set as low-power mode to save energy con-

umption. 

. Performance evaluation 

In this section, we evaluate our proposed software prototype

ystem by conducting experiments under Grid’50 0 0 infrastructure.

https://en.wikipedia.org/wiki/Strategy_pattern
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Algorithm 3 Hosts scaling algorithm. 

Input: number of hosts n in data center, number of active hosts n a , 

number of requests when host is overloaded num T u , predicted 

number of requests ˆ num (t) at time t . 

Output: number of active hosts n a 
1: n a ← 	 ˆ num (t) ÷ num T u 
 
2: n ′ ← n a − n 

3: if n ′ > 0 then 

4: Add n ′ hosts 

5: else if n ′ < 0 then 

6: Remove | n ′ | hosts 

7: else 

8: no host scaling 

9: end if 

10: return n a 

Fig. 6. Requests rate of Wikipedia trace (For interpretation of the references to 

color in this figure, the reader is referred to the web version of this article.). 
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he goals of this section include: (1) evaluating the behavior of the

oftware system in an experimental environment, and (2) demon-

trating suitability of the proposed system to enable experimental

valuations and scheduling policies in a practical setting. 

.1. Workload traces 

To make the experiments reproducible, we use the real trace

rom Wikipedia requests on October 17, 2017 to replay the work-

oad of Wikipedia users. The trace includes data on requests time

tamp and their accessed pages. We filter 4 the requests based on

er second rate and generate the requests rate. The original request

ate is around 150 0–30 0 0 per second. To scale the workload set to

t with our experiments, we use 10% of the original user requests

ize. Fig. 6 shows the requests rate per second during the day. The

lue line is the actual trace derived from Wikipedia and the red

ine is the predicted trace based on the sliding window (sliding

indow size is 5) as introduced in Section 4 . We can observe some

nomalies during intervals 60 0–80 0, which can be due to the un-

redicted network congestion. While during most time intervals,

he variances between actual trace and predicted trace are small. 

We conduct statistical analysis for the actual and predicted

races with Root Mean Square Error (RMSE) metric, which has

een widely used in statistical analysis to verify experimental

esults and measures the average spread of errors as RMSE =
 

1 
S 

∑ S 
s =1 ( ̂  I s − I s ) 2 , where S is the size of the trace, ˆ I s is the pre-
4 The details about how we filter the raw data are provided at: https://github. 

om/Cloudslab/BrownoutCon . t
icted value and I s is the actual value. If RMSE is small, it means

he predicted values are close to the actual values. In our exper-

ments, the RMSE = 2 . 67 , which represents the predicted trace is

lose to the actual one, and the predicted trace can serve a guide

or host scaling strategy. 

.2. Application deployment 

We use the Weave Shop 

5 web application that implemented

ith containers as the application in our scenario. The Weave Shop

s a shopping system for selling socks online and has multiple mi-

roservices, including user microservice to handle user login, user

atabase microservice for user information storage, payment mi-

roservice to process transactions, font-end microservice to show

he user interface, catalog microservice for managing item for sale

nd etc. As these microservices are implemented independently,

hey can be deployed and controlled without impacting other mi-

roservices. The application is deployed by the compose file as in-

roduced in Section 3.5 , and part of the microservices are config-

red as optional, e.g. recommendation engine is noted as optional. 

The user interface may be influenced due to the deactivation

f some microservices. Fig. 7 shows the user interface of Weave

hop application. Fig. 7 (a) is the user interface when full services

re provided during no resource saturated scenario, while Fig. 7 (b)

llustrates the user interface when brownout is triggered and the

ecommendation engine service/container is deactivated. As a re-

ult, other recommended products are not showed in Fig. 7 (b). 

.3. Performance metrics 

We adopt total energy consumption, average response time and

LA violation ratio as our performance metrics, and their defini-

ions are as follows: 

Total energy consumption: The total energy consumption repre-

ents the amount of energy that is consumed by the software sys-

em. The key reasons for adopting this metric are: (1) one of the

bjectives of BrownoutCon is reducing energy consumption, and

2) this metric is widely used in research articles for energy ef-

cient clouds. The total energy consumption E ( t ) during time in-

erval t is formed as the sum of all the host energy consumption

n the data center as shown in Eq. (9) . Here, we only care about

he physical server’s energy consumption rather than other net-

ork devices or cooling equipment. 

(t) = 

n −1 ∑ 

i =0 

∫ t+1 

t 

P i (t ) dt , (9)

here n is the total number of hosts in the data center, and P i ( t ) is

he power at time t of host i . And the total energy consumption of

ata center during observation time period T can be represented as
 T 
t=0 E(t) . The Grid’50 0 0 cluster provides APIs for the fine-grained

ower measurement of each physical server at per second rate. We

se the APIs to collect the power measurement data (in watts unit)

uring our observation period and calculate the power consump-

ion (in kWh unit). 

Average response time: This metric measures the time between

sers send requests and receive the response on average. We

hoose this metric because (1) another objective of BrownoutCon

s ensuring QoS, and (2) the average response time is a widely

sed metric of QoS. And the average response time is a widely

sed metric of QoS. We can use this metric to quantify the over-

ll QoS of the system. We aim to ensure this metric to be below a

pecific value, e.g. 1 s. 
5 See https://github.com/microservices-demo/microservices-demo for more de- 

ails. 

https://github.com/Cloudslab/BrownoutCon
https://github.com/microservices-demo/microservices-demo
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Fig. 7. Impact on user interface when brownout is triggered. 
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SLA violation ratio: As another metric to measure QoS, this met-

ric quantifies the ratio of requests that fail to satisfy the predefined

SLA. The reason for choosing this metric is the same as the reason

for using average response time as metric. The metric is formalized

as: 

SV R = 

num err 

num a 
, (10)

where num a is the total number of requests sent to the system,

and num err is the number of requests failing to get the response.

SVR should also be optimized to be lower than a predefined value,

e.g. 1%. 

5.4. Experimental testbed 

The testbed we used for evaluation is Grid’50 0 0, and we adopt

the cluster equipped with power measurement APIs at Lyon site.

The hardware specifications are as below: 

• 11 × Sun Fire V20z 6 with AMD Opteron 250 CPU (2 cores,

2.4 GHz) and 2 GB memory, and all the hosts are running on

Debian Linux operating system. 

We choose the machines in the same site so that we can re-

duce the network influence of uncontrolled traffics from other

sites. Among the 11 servers, nine are running as the Docker Swarm

worker nodes, one is running as the Docker Swarm master node,
6 The maximum power of this model is 237 Watts, and the sleep mode consumes 

10 Watts. 
nd another node contains workload trace and installed with JMe-

er 7 for sending requests to Docker Swarm cluster. The energy con-

umption of the workload trace node is not counted, as it is not

egarded as a part of the cluster to provide services. All required

oftwares, such as Docker, Java, Ansible 8 and JMeter have been in-

talled on these machines to minimize the effects of CPU utiliza-

ion and network delay. 

.5. Experimental design and setup 

In our experiments, the overloaded threshold is configured

s 85%, as this value has been evaluated in our previous work

u et al. (2018) that it can achieve a better trade-off between

nergy consumption and QoS than other values, e.g. below 80%

r above 90%, as small overloaded threshold triggers brownout

oo frequently and large overloaded threshold will not trigger

rownout. Another configured parameter is the optional utilization

ercentage, which represents how much CPU utilization is allowed

o be given to the optional containers. According to ( Xu et al.,

016 ), the change of this parameter has an impact on energy con-

umption. We vary this parameter with 10%, 20%, and 30% respec-

ively, as the large values, like 40%, can lead to non-negligible per-

ormance degradation, and the small values, like 5%, cannot reduce

nergy consumption effectively. The experiments are conducted by

oing through the algorithms as below: 
7 See http://jmeter.apache.org/ for more details. 
8 See https://www.ansible.com/ for more details. 

http://jmeter.apache.org/
https://www.ansible.com/
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Fig. 8. Energy consumption comparison. 
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Table 2 

The experiment results. 

Algorithm Energy Avg. Response Time SLAVR 

NPA 69.6 kWh 174.3 ms - 

HS 43.9 kWh 611.6 ms 4.3% 

LUCF-10 40.5 kWh 472.6 ms 2.1% 

LUCF-20 39.5 kWh 470.3 ms 1.4% 

LUCF-30 38.8 kWh 425.0 ms 0.5% 

MNCF-10 41.1 kWh 485.6 ms 2.3% 

MNCF-20 40.4 kWh 471.3 ms 1.4% 

MNCF-30 39.2 kWh 427.3 ms 0.5% 

RCS-10 41.4 kWh 564.0 ms 3.2% 

RCS-20 39.8 kWh 551.6 ms 2.2% 

RCS-30 38.8 kWh 511.3 ms 0.9% 

t  
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i
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a  
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D  
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1. NPA algorithm ( Beloglazov et al., 2012 ) — A baseline algorithm

that does not consider overloads and optional containers, where

the hosts are running all the time and containers are not deac-

tivated. 

2. HS ( Toosi et al., 2017 ) — Another baseline algorithm that applies

the host scaling algorithm in Algorithm 3 , while not applying

brownout-based policies. 

3. The LUCF, MNCF and RCS algorithms introduced in Section 4 are

with the varied optional utilization percentages from 10% to

30% in increments of 10%. 

We evaluate the energy consumption, average response time

nd SLA violation ratio for these algorithms. We run each exper-

ment 5 times to deal with the variance resulted from random fac-

ors, such as initial containers deployment, network latency, and

pplication running status. 

.6. Experimental results and analysis 

Fig. 8 depicts the energy consumption comparison of differ-

nt algorithms. From the results, NPA has the highest energy con-

umption with 69.6 kWh, and HS reduces it to 43.9 kWh. For the

rownout-based algorithms with varied parameters, the energy

onsumption of LUCF is from 40.5 kWh to 38.8 kWh when the op-

ional utilization percentage is increased from 10% to 30%. For the

NCF, its energy is close to LUCF, which ranges from 41.1 kWh

o 39.2 kWh when optional utilization percentage is varied. As for

he RCS, it decreases the energy from 41.4 kWh to 38.8 kWh. All

he brownout-based algorithm have shown a significant reduction

round 40% to 44% in energy consumption than NPA, and they can

lso save about 6% to 12% power consumption than HS with differ-

nt parameter settings. 

We also compare the average response time in Fig. 9 . Al-

hough NPA consumes more energy than other algorithms, with

he adequate resources, the average response time is the lowest

s 174.3 ms. The average response time of HS is 611.6ms, while the

ther brownout-based algorithms decrease this value. LUCF lowers

he average response time from 472.6 ms to 425 ms, MNCF reduces

t from 485.6 ms and reaches 427.3 ms with 30% optional utiliza-

ion percentage, and the average response time of RCS ranges from

64.0 ms–511.3 ms. 

In Fig. 10 , the SLA violation ratios are compared. As NPA has

nough resources, it does not experience any SLA violation, while

n HS, it has 4.3% SLA violation. Compared with HS, LUCF relieves

he SLA violated situation, reducing it from 2.1% to 0.5%. Similar
o LUCF, MNCF also decreases the SLA violation to 0.5% from 2.3%

hen more optional utilization percentage is allowed. As for RCS,

ts SLA violation drops from 3.2%–0.9%. 

The mean values of obtained results are also displayed in

able 2 . HS saves more energy than NPA because it dynamically

urns hosts into low-power mode, however, since resources are

imited and without brownout, HS also experiences higher aver-

ge response time and SLA violation ratio. Assuming the average

esponse time and SLA violation ratio of QoS constraints should

e below 1 second and 1% respectively, we can conclude that the

rownout-based algorithms, LUCF, MNCF and RCS, can save more

nergy than NPA and HS while ensuring QoS by reducing aver-

ge response time and SLA violation ratio. The reason lies in that

he brownout-based algorithms reduce energy by deactivating a set

f containers and improve the QoS compared with the overloaded

ituation. And the performance differences of brownout-based al-

orithms are due to the different selections of deactivated con-

ainers. For the comparison of brownout-based algorithms, when

ore optional utilization percentage is provided, the algorithms

erform better. Therefore, in practice, our software system works

etter if more containers are allowed to be deactivated, which also

eans that better performance of brownout-based approach can

e achieved when more containers are configured as optional. 

.7. Scalability discussion 

The design and implementation of BrownoutCon are based on

ocker Swarm, therefore, the performance of BrownoutCon is rele-

ant to the scalability of Docker Swarm. Scalability tests on Docker
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Fig. 9. Average response time comparison. 

Fig. 10. SLA Violation ratio comparison. 
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Swarm have been conducted in Luzzardi (2015) with 10 0 0 nodes

and 30,0 0 0 containers, which shows that Docker Swarm is highly

scalable system. 

6. Conclusions and future work 

In this paper, we proposed the design and development of a

software system based on brownout and containers for energy-

efficient clouds, called BrownoutCon. BrownoutCon is transpar-

ent system based on Docker Swarm for containers management

and does not require to modify the default configurations of

Docker Swarm via using its APIs. BrownoutCon can be cus-

tomized for implementing brownout-based algorithms, which dy-

namically activates or deactivates containers to handle overloads

and reduce energy consumption. The experiments conducted on

Grid’50 0 0 infrastructure show that the brownout-based algorithms

in BrownoutCon are able to reduce energy consumption while en-

suring QoS. The proposed software can be applied in the container-

based environment as well as future research in brownout area. 

As for future work, we would like to enable BrownoutCon to

be available in other container environments, such as Kubernetes

and Apache Mesos. We propose to extend the prediction algorithm
o handle network congestion. We would also like to investigate

emory-intensive workloads to enable BrownoutCon to be applied

o more generic workloads. In addition, we plan to develop algo-

ithms for integrated management of all resources of cloud data

enters including cooling systems Gill and Buyya (2018) to signif-

cantly reduce their energy consumption; and implement them in

rownoutCon software system. 

Software availability: We released BrownoutCon as open source,

nd it can be downloaded from: https://github.com/Cloudslab/

rownoutCon . 
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