
IEEE Network • March/April 201912 0890-8044/20/$25.00 © 2020 IEEE

AbstrAct
Smart cities have emerged as a hub of intel-

ligent applications (e.g., intelligent transporta-
tion systems, smart parking, smart homes, and
e-healthcare) to provide ambient-assisted living
and quality of experience to wide communities of
users. The smooth execution of these applications
depends on reliable data transmission between
various smart devices and machines. However,
the exponential increase in data traffic due to the
growing dependency of end users on smart city
applications has created various bottlenecks (e.g.,
channel congestion, manual flow configurations,
limited scalability, and low flexibility) on the con-
ventional network backbone, which can degrade
the performance of any designed solution in
this environment. To mitigate these challenges,
SDN emerges as a powerful new technology
that provides global visibility of the network by
decoupling the control logic from the forward-
ing devices. The abstraction of network services
in SDN architecture provides more flexibility for
network administrators to execute various appli-
cations. In SDN architecture, the decision mak-
ing process is handled by a logically centralized
controller, which may have a single point of fail-
ure. An adversary/attacker can compromise the
controller using different types of attacks (e.g.,
eavesdropping, man-in-the middle attack, and dis-
tributed denial of service) in order to gain total
control of the network by updating the flow
table entries at the data plane or hindering con-
trol plane operations. Therefore, to cope with the
aforementioned challenges, new strategies and
solutions are required for securing the SDN-en-
abled network architecture at different planes and
their associated interconnections. In this article,
various security issues and different attack vectors
are discussed along with possible solutions. To
mitigate various attacks, BlockSDN, a blockchain
as a service framework, for SDN is proposed. The
architecture of permissioned blockchain is pre-
sented followed by two attack scenarios, 1) a mal-
ware compromised switch at the data plane and
2) distributed denial of service attack at the con-
trol plane, to demonstrate the applicability of the
BlockSDN framework for various future applica-
tions. Finally, the open issues and challenges with
respect to the design of blockchain solutions for
SDN in smart city applications are also discussed.

IntroductIon
The growth of smart cities has unfolded a diverse
range of intelligent and ubiquitous applications
ranging from intelligent transportation systems
(e.g., smart parking and intelligent traffic lighting)
to ambient living (e.g., smart homes, utilities, and
services) to e-healthcare (e.g., smart hospitals and
recommendation systems), to name a few. The
evolution of the latest technologies such as the
Internet of Things (IoT), cloud computing, and
edge computing have provided a strong platform
for the growth of the various aforementioned
smart city applications [1]. Figure 1 shows dif-
ferent types of smart city applications and the
enabling technologies. These data-intensive appli-
cations have emerged as a source of big data
generation in a smart city environment. For exam-
ple, a typical smart city housing a population of
1 million is expected to generate 200 million GB
data per day [2]. Now, this data has to be effec-
tively collected, processed, and analyzed for the
continuous and non-disruptive provisioning of
smart city applications. Thus, a massive amount
of data needs to be transmitted at a rapid pace
over the underlying forwarding devices. There-
fore, relaying such a huge amount of data may
lead to congestion on the underlying network
backbone infrastructure, which in most cases is
managed by TCP/IP. Although there are various
congestion control algorithms proposed in the
literature, these algorithms do not perform well in
view of the data generated from different devices.
Moreover, the dependence of conventional net-
works on standard protocols and algorithms acts
as a potential bottleneck for handling the dynamic
requirements of data transmission in a smart city
environment [3].

Smart cities intend not only to provide better
quality of experience to users but also to ensure
robust and reliable connectivity for ubiquitous
service provisioning. This requires improved band-
width capabilities, enhanced flexibility, and a scal-
able service-oriented architecture. In this context,
software defined networking (SDN) has come
up as a critical network architecture for bearing
the escalated challenges of providing flexible and
scalable service-oriented architecture for smart
city applications [3]. SDN provides various ben-
efits due to its inherent architecture wherein the
control capabilities are shifted to a centralized

BlockSDN: Blockchain as a Service for Software Defined Networking in Smart City
Applications
Gagangeet Singh Aujla, Maninderpal Singh, Arnab Bose, Neeraj Kumar, Guangjie Han, and Rajkumar Buyya

RECENT ADVANCES IN SECURITY AND PRIVACY FOR FUTURE
INTELLIGENT NETWORKS

Digital Object Identifier:
10.1109/MNET.001.1900151

Gagangeet Singh Aujla is with Newcastle University and Chandigarh University; Maninderpal Singh and Arnab Bose are with Chandigarh University;
Neeraj Kumar is with Thapar Institute of Engineering and Technology; Guangjie Han is with Nanjing Agricultural University and Hohai University;

Rajkumar Buyya is with the University of Melbourne.

IEEE Network • March/April 2020 13

controller rather than embedded on the forward-
ing devices. It offers increased coverage and
capacity in a cost-effective manner by providing
global network visibility. For example, multiple
sites across the city may be connected and con-
trolled from a centralized location, which in turn
reduces the cost and complexity of deploying
geo-distributed network resources. Moreover, the
centralized control and visibility help to determine
the best route according to the application flow
requirement. It also helps to track the link health,
congestion level, and application priority. SDN
also allows the integration of services and cloud
applications, which can run using a virtualized
environment. It also provides the ability to provide
multiple routes for a specific application, thereby
providing a better customer experience when an
application is accessed by multiple tenants. The
key to the success of SDN is vendor neutrality
and the use of open standards. Smart city appli-
cations can adopt multi-vendor architecture to
reduce costs by pooling the computing, process-
ing, and storage functionality [4].

Besides providing manifold benefits, SDN
architecture is susceptible to different attacks and
security concerns. The SDN architecture acts as
a double-edged sword, which provides various
benefits we well as associated security challenges.
Although the SDN controller can provision global
security policies throughout the network, it also
tends to be a single point of failure. An attacker

can either gain access to the controller or itself be
a controller in order to control the entire network.
An attacker can try to overcome the scaling limit
of the controller to enforce its own control and
deny services to the underlying forwarding devic-
es and prospective applications. Although the
programmability of SDN architecture is a major
benefit to developers, attackers can easily tam-
per with the core functionality of the architecture
[5]. Therefore, different compromised or malware
infected applications can be installed on the con-
troller, which can lead to unexpected network
behavior. A virtual switch can be deployed at the
edge of a network to scrutinize and filter out the
incoming traffic in order to direct the suspicious
flows toward mitigation and inspection devices.
On the contrary, the same switch can be com-
promised by malware to inject erroneous flow
or trigger distributed denial of service (DDoS)
attacks [6]. Moreover, the communication path
between SDN planes opens up a new frontier of
security concerns. Any adversary can disrupt the
communication path between the different planes
in order to create a vulnerability void that can eas-
ily be compromised.

sdn AttAck Vectors And PotentIAl solutIons:
PlAne-WIse AnAlysIs

Figure 2 shows the possible attacks at various lay-
ers of the SDN architecture. The plane-wise anal-

FIGURE 1. Smart city: applications and technologies.

IEEE Network • March/April 202014

ysis of these attack vectors and possible solutions
are discussed below.

APPlIcAtIon PlAne And northbound APIs
There are various applications and northbound
application programming interfaces (API)s (Java,
Python, REST, JSON, etc.) that an attacker can
exploit in order to gain the network control
through the controller. Accountability, access con-
trol, authorization, and authentication are major
security issues that need to be addressed while
designing security primitives for the application
plane [7]. Some of the possible attacks at the
application plane are described below [8–10].

Password Guessing or Brute Force: Using
password guessing or brute force, an attacker can
access the applications or northbound API, which
may further lead to unauthorized access to the
controller.

Application Exploitation: An unauthorized
access to an application can be gained to perform
illegal activities (malfunction, service disruption, or
eavesdropping).

API Exploitation: A software component may
contain malicious codes that can allow a hacker
to perform illegal activities. API exploitation can
be done at the northbound interface to disrupt
the network flow.

Potential solutions for handling the above
discussed attack vectors are presented below
[8–10].

PermOF: A permission granting system for
OpenFlow (OF) applications can be used to pro-
vide controlled access to the path and controllers
using different permissions of read, notification,
and write while allowing access to sensitive infor-
mation.

Flover: A model checking system ensures that
the OF policies do not collide with the network
security policies.

Switch-Based Rule Verification (SRV): It is
used to detect the malicious rules in the network
topology.

Efficient Naming Scheme for Flow Entry: In
this solution, the new entry is added in the OF
table using two main elements: the security policy
creating a person’s role and the security privilege
of that role.

control PlAne
The control plane of SDN is the prevalent choice
of attackers for many reasons. For example, an
adversary can target the controller to install new
flow rules through different interfaces. If an adver-
sary overtakes the controller, it can control the
traffic at its will, thereby bypassing the security
policies deployed at various planes. The attackers
overpower the controller’s scalability and control
its availability to gain network control. Various
attacks related to the control plane are described
as below [8–10].

Controller Hijacking: Switches can be con-
nected to a malicious controller as the IP address
between the switch and the controller are not
checked due to improper TCP connections
between them.

DDoS Attack: An adversary floods a channel
with unauthorized requests to halt its normal func-
tioning.

ARP Spoofing Attack: An adversary can con-
trol the network illegally to steal or modify the
data.

Network Manipulation: An attacker overtakes
the SDN controller to produce false network data
using which other chain attacks are initiated on
the network.

The potential solution for handling these attack
vectors at the control plane are presented below
[8–10].

SDN-Guard: It is connected to the intrusion
detection system at the control plane; it analyzes
the incoming packet and informs about the prob-
ability of a threat.

Enhancing Scalability: Scalability can be
improved by distributing the functions of the con-
trol plane, increasing the memory or processing
power of the controller. For example, HyperFlow
is a logically centralized but physically distributed
control plane wherein decisions are made at the
individual controller level [11].

Enhancing Availability: By modifying the OF
model, the interaction between the control plane
and the data plane is reduced. For example, in

FIGURE 2. Attack vectors at different layers of SDN architecture.

IEEE Network • March/April 2020 15

DevoFlow, some control is given to the switches,
while the main network control is assigned to the
controller itself.

dAtA PlAne And southbound APIs
At this level, an adversary can control the net-
work elements to install new flow rules in the flow
tables or initiate DDoS attack [6, 11]. An attacker
can easily compromise the forwarding devices to
perform various attacks [8–10] discussed below:
• Traffic diversion: An attacker can control the

network elements or forwarding devices to
redirect the traffic flow and allow eavesdrop-
ping.

• Side channel attack: Latency detection
between two elements in a channel can help
the attacker know if there is any flow rule or
not.

• DoS: An attacker floods a particular channel
with unauthorized requests and packets that
may disrupt the functioning of the complete
transaction.

• ARP Spoofing Attack: Here, an attacker can
control the network illegally to steal or modi-
fy the data.

• Traffic sniffing: It is used by a hacker to cap-
ture and analyze network communication
information.

• Data Modification: During communication
between the data plane and the control
plane, data leakage is highly possible, and
man-in-the-middle attack is used to gain
complete access in the data plane.

• Flow table modification: In this attack, the
flow tables installed at an OF switch are tam-
pered with or modified.

• Misconfiguration: By making Transport Layer
Security (TLS) optional in the OF switches,
the chance of misconfiguration increases
due to vulnerabilities.
The potential solution for handling the above

discussed attack vectors at data plane are present-
ed as below [8–10].

Veri-Flow: It is a tool placed between network
elements and the SDN controller to detect mali-
cious rules installed at the forwarding devices.

Network Planning: The topology of the net-
work and distance between the switches and the
controller must be taken into consideration. The
minimum time a switch takes to transfer pack-
ets represents the lowest probability of being
attacked as it becomes negligibly open for any
attacker to view.

Mutual Authentication: Trust needs to be
maintained between the control and data planes
to avoid any attack. TLS and IPsec provide
encrypted communication between the controller
and switches, thereby providing integrity, confi-
dentiality, and protection.

blocksdn: blockchAIn As A serVIce for
sdn AttAck MAnAgeMent

In this section, the blockchain process and its
architecture is discussed followed by the attack
scenarios generated at SDN layers. Moreover, the
blockchain-based solutions for the mitigation of
these attack scenarios are also described.

blockchAIn: bAsIcs, ArchItecture, And the Process

Whenever the thought of immutable distribut-
ed storage comes, the mind reflects back to the
usage of blockchain technology [12]. Blockchain
consists of blocks of data that are linked to each
other using cryptographic hash functions. Each
block of data constitutes some transactions that
are recorded into it, a related Merkle root hash of
the transactions (to maintain integrity), timestamps
of the block creation, the hash of the block pre-
ceding the current block, and its own hash (for
maintaining its integrity as a whole). Each block
(before it is created) undergoes a process known
as mining, which is undertaken by nodes in the
blockchain called miner nodes. Every node has
an equal opportunity of becoming a miner. The
miners, upon successful mining of a block, receive
some incentives as a reward for participating in
the mining process, which is based on the consen-
sus mechanism [13].

Numerous consensus methods have been pro-
posed from time to time. For example, in proof
of work, a miner has to prove its legitimacy by
solving some complex mathematical problem that
consumes resources. In proof of stake, the miner
has to prove its stake holding to do the mining.
Similarly, there are many other methods designed
for mining purpose that have some pros and cons
associated with them. Thus, depending on the
kind of problem being dealt with, an appropriate
mining mechanism can be selected [14]. Once a
block is mined, it is added to the existing block-
chain available with all the participating nodes.
Now, if at any node a block is manipulated, the
blockchain is in an error state on that specific
node, and therefore data tampering can be iden-
tified. The process flow and architecture of block-
chain transactions is depicted in Fig. 3. With the
evolution of different applications in smart cities,
two different variants of blockchain, public/per-
missionless and private/permissioned blockchains,
have evolved over time.

Permissionless or Public Blockchain: This
is the most common type of blockchain, used
for famous cryptocurrency like bitcoin. Anyone
can be part of this blockchain, and anyone can
become a miner. It is a simple and very powerful

FIGURE 3. Blockchain: the process flow and architecture.

IEEE Network • March/April 202016

blockchain as it can scale up. But the scalability
becomes a problem for this kind of blockchain as
anyone can be part of the blockchain, so there is
no control on whom to allow access and whom
to restrict.

Permissioned or Private Blockchain: Con-
trary to the actual blockchain idea (i.e., to create
a truly decentralized storage solution), permis-
sioned or private blockchains have evolved as
a solution to address the issue of access control
and authentication/authorization. The semidistrib-
uted blockchain variant popularly known as the
permissioned blockchain has a central authority
that controls the entry and access of the nodes
in the blockchain. It helps in filtering out potential
practitioners.

blockchAIn As A serVIce for MItIgAtIon of MAlWAre
coMProMIsed sWItch AttAck At the dAtA PlAne

The most common attack at the data plane is
malware injection via a compromised switch that
is part of the normal flow. This attack scenario

is depicted in Fig. 4a, which considers the case
where host A (10.0.0.3) tries to send data pack-
ets to host B (136.110.56.3). In an ideal case
of data flow, initially host A sends a packet (P)
to the OFswitch (S1) to which it is connected
directly. On receiving P from host A, the initial
inspection of the packet is done at S1. Accord-
ing to the packet characteristics, the flow table is
scrutinized to find a suitable matching entry. If a
matching flow entry is available in the flow table,
the corresponding action is performed. However,
as depicted in the attack scenario, the matching
flow entry was not found, so S1 sends a Packet
IN request to the controller for installing a new
flow rule. After this, the controller inspects P and
checks the entire network topology to establish a
suitable flow rule. Accordingly, it sends the flow
rule in the form of Packet OUT to all the data
plane devices that would be part of the transmis-
sion process. Eventually, the packet that started
from host A will now pass through devices S1, S2,
…, Sn to reach host B. This ideal scenario ends up
with the consideration that any of these devices
may be compromised. An attacker may break into
any of the OF switches and then inject its own
traffic, thereby dropping the original packet. In
Fig. 4b, S3 is shown as a malware-compromised
switch being controlled by an attacker. Now, ide-
ally S3 is supposed to relay the incoming pack-
ets to S4; however, it is sharing the data to the
attacking node. In this case, the attacker node is
also injecting its own traffic into the flow while
dropping the original packets.

To deal with this problem, the flow tables
and the packets of the flow are secured using
permissioned blockchain. Tasks like creating a
new block and adding to a blockchain are limited
to the controller in a permissioned blockchain
manner. The consensus mechanism is realized
using a proof of stake mechanism wherein the
controller stakes its network topology reposito-
ry [14]. As shown in Fig. 4b, the process is initi-
ated when host A starts transmission to host B.
Once the message reaches the directly connected
S1, it checks the blockchain for the associated
flow rule. If the rule is not found in any block,
the request is forwarded to the controller with
the sender’s and receiver’s IP addresses. The con-
troller (the miner for permissioned blockchain)
collects all transactions coming to it since the cre-
ation of the previous block. Then it validates them
based on the network topological view and adds
the transaction into a new block. This new block
is sent to all OFswitches under the control of the
controller. The OFswitches uses the information
from the blockchain and performs the action (i.e.,
forward, enqueue, drop, or modify). Now, if an
attacker tries to capture packets and insert its own
packets into the ongoing flow, the Merkle root
hash gets changed as the source address of the
newly added packets will be that of the attacker
now. The blockchain immediately indicates that
the hashes of some blocks are not matching the
chained blocks, thereby preventing the attack.

The proposed blockchain architecture for han-
dling the problem of a malware-compromised
switch using permissioned blockchain is shown in
Fig. 5. The sequence of activities for the proposed
scheme are described as:
• A switch (S) sends a request for joining the

FIGURE 4. Malware-compromised switch in SDN architecture; a) Case1: mal-
ware-compromised switch; b) Case2: blockchain as a service for secure
traffic flow.

(a)

(b)

IEEE Network • March/April 2020 17

blockchain network to the controller, which
passes it to the identity issuer located at the
control plane.

• The purpose of the identity issuer is to verify
the authenticity of a switch and then issue an
identity (SID) that is valid for the considered
blockchain.

• The identity issuer verifies the switch based
on the authentication information provided
using the zero knowledge proof concept.
The zero knowledge proof is the method in
which one party can prove its knowledge
about some information X to another party,
without revealing the value of X. The two
communicating parties are referred to as
prover and verifier. If the prover provides
additional information about actual facts to
the verifier, the zero knowledge proof struc-
ture is broken [15]. If the considered switch
is successfully verified using zero knowledge
proof, it is added to the list of verified switch-
es in the identity verifier’s database.

• On successful addition to the database, a
pair of public and private keys are issued to
the switch. The public key is also provided
to all the switches that are part of the block-
chain.

• On receiving the keys, the requesting switch
can carry out the transactions (eg., flow table
update) on the blockchain by encrypting
them using its own private key.

• Each member of the blockchain can now ver-
ify the switch that has issued the transaction.
However, since the transaction is still not
added to the blockchain, it is of no use yet.
It has to be added into the blockchain by the
miner or consensus node that resides at the
control plane. The consensus node fetches
all the unconfirmed transactions, which are
still not added into the blockchain.

• Upon receipt of an unconfirmed transaction,

the consensus node sends it to the identity
verifier for verification.

• If the key is verified by the identity verifier,
the information is sent to the consensus
node for further processing of the transac-
tion. Otherwise, the transaction is declined,
and the same is informed to the requesting
switch.

• Now, the consensus node adds the trans-
action to the block being created at time
t. Once the block is created, it is synchro-
nized to all the switches that are part of the
permissioned blockchain. Now, each switch
has the flow rules residing in the blockchain.
If an attacker tries to inject some flow rule
that is not legitimate, the modification will
simply be reflected in the blockchain as the
hash value of the blocks created thereafter
will not match previous block hashes, there-
by breaking the fundamental linking of the
blockchain.

blockchAIn As A serVIce for
MItIgAtIon of ddos AttAck At the control PlAne

Among various SDN attacks, DDoS/DoS is one
of the more popular kind. The attack scenario for
generating a DDoS attack at the control plane of
SDN through a malware-injected switch is shown
in Fig. 6a. The network topology depicted for the
attack scenario consists of three levels of switch-
es: 0, 1, and 2. The attack scenario proceeds in
the following manner:
• An attacker captures the switch at level 0

through a malware injection.
• The attacker starts a packet transfer request

and sends it to switch AS1.
• Since there is now a matching flow available,

AS1 sends a Packet IN request to the con-
troller for the flow information regarding the
packet in question.

• The controller sends the flow details to the

FIGURE 5. Blockchain as a service for switch verification and validation.

IEEE Network • March/April 202018

switches that are expected to be part of the
flow (i.e., AS1 and switches LS1, LS2, …., LSn
located at level 2).

• The malicious script inserted into switch
AS1’s operating system alters the flow infor-
mation received from the controller, chang-
ing the action type to forward; flood.

• The timer of the flow entry received from
the controller at AS1 and level 1 switches is
allowed to expire; then the attacker floods
the received packet to the immediate neigh-
bors.

• The packet comprising a trojan is forwarded
to the switches at level 1.

• When the packet comprising the trojan
reaches the switches at level 1, the flow rule
has already timed out and no longer exists
on level 1 switches.

• Now, each switch located at level 1 sends
Packet IN request to the controller.

• The controller sends the Packet OUT con-
taining the new flow entry to all switches at
level 1 and the switches expected to be part
of the flow.

• Now, the trojan alters the action field of the
flow table at the level 1 switches and floods
it to the neighboring level 2 switches in a
similar way as was done in the fifth step.

• The level 2 switches, upon receiving the
packets, send Packet IN requests to the con-
troller.

• The controller again calculates the path and
sends Packet OUT to all level 2 switches and
the switches that are expected to be part of
the flow.

In this way, the malicious packet keeps on propa-
gating through the data plane level by level, and
the magnitude of the attack grows exponentially,
leading to the choking of the controller.

The proposed blockchain-as-a-service archi-
tecture to handle the DDoS attack is illustrated in
Fig. 6b. The sequence of activities are described
below.

• Initially, S requests to join the permissioned
blockchain network, and the request is
passed to the identity issuer.

• The identity issuer verifies the authenticity or
legitimacy of the switch using zero knowl-
edge proof and then issues an identity (SID).

• If the verification is successful, S is added to
the list of verified switches in the verifier’s
database.

• After addition to the database, a pair of
public and private keys are issued to S. The
public key is also made available to all the
switches that are part of the blockchain.

• Upon receiving the keys, the requesting
switch initiates the transactions for flow
table update (e.g., update of counter, timer,
or action field for DDoS generation) on the
blockchain by encrypting them using its own
private key.

• Each member of the blockchain verifies the
switch that has issued the transaction. How-
ever, since the transaction is still pending,
it has to be added into the blockchain by
the miner or consensus node. For this rea-
son, the consensus node fetches all the
unconfirmed transactions that have yet to be
added into the blockchain.

• The consensus node sends the unconfirmed
transactions to the identity verifier for
authentication.

• The identity verifier checks the blacklist log,
which holds the malicious flows and switch-
es’ identities.

• If the unconfirmed transactions and the asso-
ciated switch identity are not available in the
blacklist log, the transaction is approved, and
the control is passed to the flow mapper for
replication analysis. On the contrary, if the
unconfirmed transactions and the associated
switch identity are available in the blacklist,
the transaction is declined.

• The flow mapper is used for replication
analysis and compares the incoming flows

FIGURE 6. Generation and mitigation of DoS/DDoS attack: a) DoS/DDoS attack generation; b) blockchain as a service for DoS/DDoS
prevention.

(a) (b)

IEEE Network • March/April 2020 19

from various switches with the threshold
limit set by the controller. If a similar Packet
IN request is coming from more than one
switch at the same time, such requests are
forwarded to a dummy virtual controller;
otherwise, they are forwarded to the consen-
sus node for further processing.

• A dummy controller is deployed to fool the
attacker as it makes the attacker presume
that the transaction has reached the actual
controller. It also relieves the central control-
ler from the load related to the suspicious
requests. It checks all the incoming flow
transactions and adds the multiple requests
that are related to similar flow attributes
to a batch. Now, this batch of similar flow
requests is sent to a flow inspector for fur-
ther inspection.

• The flow inspector inspects the attributes of
the requests for potential threat detection. If
the batch of requests is malicious, they are
dropped.

• Once the incoming requests are identi-
fied as malicious, the question arises as to
whether these requests are generated by a
single device or multiple devices. If all such
requests are generated to the controller from
a single device (DoS attack), this originator
node is traced. The flow inspector checks for
the actual originator node for these flows.
Once identified, these originator switches
are added to the blacklist log. In anoth-
er case, there may be different forwarding
devices that have generated the requests
to the controller (DDoS). In such a case,
there has to be some machine that is con-
trolling the entire process. Such a machine
or device is identified by the controller and
then added to the blacklist log. In this way,
all the switches working under the control
of an attacking device are relieved, and they
can perform normal activities. If the requests
are not malicious, such information is sent to
the consensus node for further processing of
the transaction.

• Now, the consensus node adds the trans-
action to the block being created at time t.
Once the block is created, it is synchronized
to all the switches that are part of the per-
missioned blockchain. Each switch will have
the flow rules residing in the blockchain
available to it.

oPen Issues And chAllenges
Although the BlockSDN framework is capable of
mitigating various attacks at SDN planes, there
are still many open issues and challenges that
must be handled effectively in the near future to
make this framework more robust and reliable.
The identified open issues and challenges are dis-
cussed below.

Storage: Storing blockchain in OF switches
requires memory resources in large numbers,
which can become a bottleneck as the size of
blockchain increases.

Computational Load: The controller will have
to manage the operations related to mining, valid-
ity issuing, and verification, which require superior
computations.

Delay and Response Time: The proposed

scheme enables addition of flow tables to block-
chain, which introduces delay in comparison to
the line speed.

Centralized Miner: Permissioned blockchain
can bring the network to one point at which it
could fail. In future work, the mining work can
be distributed over multiple controllers to enable
decentralization.

Computational Complexity: The load of min-
ing, validity issuing, and verification at the con-
troller would eventually lead to an increase in the
computational complexity.

Computational Cost: The additional use of
computational resources can lead to an increase
in the computational cost, which is not desired by
any effective solution.

Interoperability: As the hardware devices and
switches are not vendor-specific, different issues
may arise related to interoperability that need to
be handled effectively using appropriate mecha-
nisms. Even more, interoperability issues related
to different blockchains should be handled care-
fully.

Multi-Controller Scenario: The proposed solu-
tion is not limited to a single controller and uses
two controllers: an actual controller and a dummy
controller (to foil the attacker). However, a deep
analysis of the proposed solution is still required
in a multi-controller scenario to understand the
associated implications.

conclusIons
Smart city infrastructure is facing a tough chal-
lenge to provide reliable connectivity to handle
the broad range of applications. The dependen-
cy of conventional network architecture on stan-
dard protocols and algorithms puts a limitation
on the scalability and flexibility of service-orient-
ed architecture. To overcome these issues, SDN
is widely adopted in industrial and commercial
environments for provisioning of reliable and
dynamic flow routes. However, besides being the
top choice of network administrators, SDN has
to deal with several security issues, which have
opened the door to new research verticals. The
dependency on a logically centralized controller
adds to the concern as it is a popular target for
attackers. In this article, a concise analysis on var-
ious prominent attack vectors for the SDN archi-
tecture is presented. From this analysis, it can be
concluded that the SDN architecture has to pre-
vent vulnerabilities not only at different planes but
also at the intermediate communication paths.
Moreover, different possible solutions to cope
with the discussed attack vectors are discussed.
The consistency and integrity of flow entries have
to be maintained in order to prevent manipula-
tion of traffic routes by attackers using malware
codes. Two different cases of malware injection at
the data and control planes have been described.
In the first case, a malware-infected switch can
inject its own traffic while dropping the original
packets. In the second case, a malware-infect-

The proposed solution is not limited to a single controller and uses two controllers: an actual controller
and a dummy controller (to foil the attacker). However, a deep analysis of the proposed

solution is still required in a multi-controller scenario to understand the associated implications.

IEEE Network • March/April 202020

ed switch can insert malicious script on various
neighboring switches in order to trigger DDoS
attack at the control plane. To prevent such attack
scenarios, blockchain-based mitigation techniques
have been designed in this article. Due to the cen-
tralized architecture of SDN, the permissioned
blockchain model is used for the design of these
techniques. Blockchain is an emerging technology
that can be exploited further to handle different
security concerns of the SDN architecture. Finally,
the open issues and challenges that have come
up due to the amalgamation of blockchain with
SDN have been highlighted.

AcknoWledgMents
This work is partially supported by the National
Key Research and Development Program, No.
2017YFE0125300, the National Natural Science
Foundation of China-Guangdong Joint Fund under
Grant No. U1801264, the Jiangsu Key Research
and Development Program, No. BE2019648, and
the Melbourne-Chindia Cloud Computing (MC3)
Research Network.

references
[1] J. Gubbi et al., “Internet of Things (IoT): A Vision, Architec-

tural Elements, and Future Directions,” Future Generation
Computer Systems, vol. 29, no. 7, 2013, pp. 1645–60.

[2] C. V. Networking, “Cisco Global Cloud Index: Forecast and
Methodology 2015–2020,” white paper, 2016; https://
www.cisco.com/c/dam/m/en-us/serviceprovider/ cisco-
knowledgenetwork/files/622-11-15-16-Cisco-GCICKN-
2015-2020-AMER-EMEAR-NOV2016.pdf, accessed Jan.
2019.

[3] G. S. Aujla et al., “Data Offloading in 5G-Enabled
Software-Defined Vehicular Networks: A Stackel-
berg-Game-Based Approach,” IEEE Commun. Mag., vol. 55,
no. 8, Aug. 2017, pp. 100–08.

[4] A. Jindal et al., “Sedative: SDN-Enabled Deep Learning Archi-
tecture for Network Traffic Control in Vehicular Cyber-Phys-
ical Systems,” IEEE Network, vol. 32, no. 6, Nov./Dec. 2018,
pp. 66–73.

[5] Q. Li et al., “Security Policy Violations in Sdn Data Plane,”
IEEE/ACM Trans. Networking, vol. 26, no. 4, 2018, pp.
1715–27.

[6] S. Deng et al., “Packet Injection Attack and Its Defense in
Software-Defined Networks,” IEEE Trans. Info. Forensics and
Security, vol. 13, no. 3, 2017, pp. 695–705.

[7] C. Yoon et al., “Flow Wars: Systemizing the Attack Surface
and Defenses in Software-Defined Networks,” IEEE/ACM
Trans. Networking, vol. 25, no. 6, 2017, pp. 3514–30.

[8] S. Scott-Hayward, S. Natarajan, and S. Sezer, “A Survey of
Security in Software Defined Networks,” IEEE Commun. Sur-
veys & Tutorials, vol. 18, no. 1, 2015, pp. 623–54.

[9] T. Dargahi et al., “A Survey on the Security of Stateful SDN
Data Planes,” IEEE Commun. Surveys & Tutorials, vol. 19, no.
3, 2017, pp. 1701–25.

[10] A. Akhunzada and M. K. Khan, “Toward Secure Software
Defined Vehicular Networks: Taxonomy, Requirements, and
Open Issues,” IEEE Commun. Mag., vol. 55, no. 7, July 2017,
pp. 110–18.

[11] S. Gao et al., “Security Threats in the Data Plane of Soft-
ware-Defined Networks,” IEEE Network, vol. 32, no. 4, July/
Aug. 2018, pp. 108–13.

[12] S. Aggarwal et al., “Energychain: Enabling Energy Trad-
ing for Smart Homes Using Blockchains in Smart Grid Eco-
system,” Proc. 1st ACM MobiHoc Wksp. Networking and
Cybersecurity for Smart Cities, 2018, p. 1.

[13] S. Tuli et al., “Fogbus: A Blockchainbased Lightweight
Framework for Edge and Fog Computing,” J. Systems and
Software, vol. 154, 2019, pp. 22–36.

[14] A. Jindal, G. S. Aujla, and N. Kumar, “Survivor: A Block-

chain Based Edge-as-a-Service Framework for Secure Energy
Trading in Sdn-Enabled Vehicle-to-Grid Environment,” Com-
puter Networks, vol. 153, 2019, pp. 36–48.

[15] P. Matias et al., “NIZKCTF: A Noninteractive Zero-Knowl-
edge Capture-The-Flag Platform,” IEEE Security Privacy, vol.
16, no. 6, Nov 2018, pp. 42–51.

bIogrAPhIes
GaGanGeet SinGh aujla [S’15, M’18] (gagi_aujla82@yahoo.
com) is working as a postdoctoral research associate in the
School of Computing at Newcastle University, United King-
dom. Previously (2018–2019), he was an associate professor
in the Computer Science and Engineering Department, Chandi-
garh University, India. Prior to this, he was a research associate
(2017–2018) in an Indo-Austria research project sponsored by
the Department of Science and Technology, Government of
India and the Ministry of Science, Austria. He received the 2018
IEEE TCSC Outstanding Ph.D. Dissertation Award, which rec-
ognized his leading expertise in the application of scalable and
sustainable algorithms for cloud data centers, software defined
networks, and smart grid.

Maninderpal SinGh aujla [S’19] (mpvirdi@gmail.com) is work-
ing toward his Ph.D. in the Computer Science and Engineer-
ing Department, Chandigarh University, India, where is also an
assistant professor. He received his M.Tech. from the Computer
Science and Engineering Department, Lovely Professional Uni-
versity, India, in 2013. He received his B.Tech. from the Com-
puter Science and Engineering Department, Punjab Technical
University, India, in 2010.

arnab boSe (arnabmy@live.com) received his M.Tech in com-
puter science and engineering from Chandigarh University. He
worked as a senior research fellow at the Defence Research and
Development Organisation, Dehradun,India, from November
2013 to August 2017. He received his B.Tech. in computer
science and engineering from Himachal Pradesh University,
India, in 2010.

neeraj KuMar [M’16, SM’17] (neeraj.kumar@thapar.edu) is a
professor in the Department of Computer Science and Engineer-
ing, Thapar Univesity. He received his M.Tech. from Kurukshetra
University, India, followed by his Ph.D. from SMVD University,
Katra, in computer science and engineering. He was a postdoc-
toral research fellow at Coventry University, United Kingdom.
He has more than 250 research papers in leading journals and
conferences of repute. He is a Technical Editor of IEEE Network
and an Associate Technical Editor of IEEE Communication Maga-
zine. He is an Associate Editor of IJCS, Wiley, JNCA, Elsevier, and
Security and Communication, Wiley, and on the Editorial Board
of Computer Communications, Elsevier.

GuanGjie han [S’03–M’05–SM’18] (hanguangjie@gmail.com)
received his Ph.D. degree from Northeastern University, Shen-
yang, China, in 2004. He worked as a postdoctoral eesearcher
with the Department of Computer Science, Chonnam National
University, Gwangju, Korea. He was a visiting research scholar
with Osaka University, Suita, Japan. He was a visiting profes-
sor at City University of Hong Kong, China. He is currently a
professor with the Department of Information and Communica-
tion System, Hohai University, Changzhou, China. He is also a
professor with the College of Engineering, Nanjing Agricultural
University, Nanjing, China.

rajKuMar buyya (rbuyya@unimelb.edu.au) is currently a Red-
mond Barry Distinguished Professor and the Director of the
Cloud Computing and Distributed Systems (CLOUDS) Labora-
tory, University of Melbourne, Australia. He also serves as the
founding CEO of Manjrasoft Pty. Ltd. His research interests
include cloud computing, fog computing, and parallel and dis-
tributed systems.

Besides being the top choice of network administrators, SDN has to deal with several security issues
that have opened the door to new research verticals. The dependency on a logically

centralized controller adds to the concern as it is a popular target for attackers.

