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AbstrAct
Smart cities have emerged as a hub of intel-

ligent applications (e.g., intelligent transporta-
tion systems, smart parking, smart homes, and 
e-healthcare) to provide ambient-assisted living 
and quality of experience to wide communities of 
users. The smooth execution of these applications 
depends on reliable data transmission between 
various smart devices and machines. However, 
the exponential increase in data traffic due to the 
growing dependency of end users on smart city 
applications has created various bottlenecks (e.g., 
channel congestion, manual flow configurations, 
limited scalability, and low flexibility) on the con-
ventional network backbone, which can degrade 
the performance of any designed solution in 
this environment. To mitigate these challenges, 
SDN emerges as a powerful new technology 
that provides global visibility of the network by 
decoupling the control logic from the forward-
ing devices. The abstraction of network services 
in SDN architecture provides more flexibility for 
network administrators to execute various appli-
cations. In SDN architecture, the decision mak-
ing process is handled by a logically centralized 
controller, which may have a single point of fail-
ure. An adversary/attacker can compromise the 
controller using different types of attacks (e.g., 
eavesdropping, man-in-the middle attack, and dis-
tributed denial of service) in order to gain total 
control of the network by updating the flow 
table entries at the data plane or hindering con-
trol plane operations. Therefore, to cope with the 
aforementioned challenges, new strategies and 
solutions are required for securing the SDN-en-
abled network architecture at different planes and 
their associated interconnections. In this article, 
various security issues and different attack vectors 
are discussed along with possible solutions. To 
mitigate various attacks, BlockSDN, a blockchain 
as a service framework, for SDN is proposed. The 
architecture of permissioned blockchain is pre-
sented followed by two attack scenarios, 1) a mal-
ware compromised switch at the data plane and 
2) distributed denial of service attack at the con-
trol plane, to demonstrate the applicability of the 
BlockSDN framework for various future applica-
tions. Finally, the open issues and challenges with 
respect to the design of blockchain solutions for 
SDN in smart city applications are also discussed.

IntroductIon
The growth of smart cities has unfolded a diverse 
range of intelligent and ubiquitous applications 
ranging from intelligent transportation systems 
(e.g., smart parking and intelligent traffic lighting) 
to ambient living (e.g., smart homes, utilities, and 
services) to e-healthcare (e.g., smart hospitals and 
recommendation systems), to name a few. The 
evolution of the latest technologies such as the 
Internet of Things (IoT), cloud computing, and 
edge computing have provided a strong platform 
for the growth of the various aforementioned 
smart city applications [1]. Figure 1 shows dif-
ferent types of smart city applications and the 
enabling technologies. These data-intensive appli-
cations have emerged as a source of big data 
generation in a smart city environment. For exam-
ple, a typical smart city housing a population of 
1 million is expected to generate 200 million GB 
data per day [2]. Now, this data has to be effec-
tively collected, processed, and analyzed for the 
continuous and non-disruptive provisioning of 
smart city applications. Thus, a massive amount 
of data needs to be transmitted at a rapid pace 
over the underlying forwarding devices. There-
fore, relaying such a huge amount of data may 
lead to congestion on the underlying network 
backbone infrastructure, which in most cases is 
managed by TCP/IP. Although there are various 
congestion control algorithms proposed in the 
literature, these algorithms do not perform well in 
view of the data generated from different devices. 
Moreover, the dependence of conventional net-
works on standard protocols and algorithms acts 
as a potential bottleneck for handling the dynamic 
requirements of data transmission in a smart city 
environment [3]. 

Smart cities intend not only to provide better 
quality of experience to users but also to ensure 
robust and reliable connectivity for ubiquitous 
service provisioning. This requires improved band-
width capabilities, enhanced flexibility, and a scal-
able service-oriented architecture. In this context, 
software defined networking (SDN) has come 
up as a critical network architecture for bearing 
the escalated challenges of providing flexible and 
scalable service-oriented architecture for smart 
city applications [3]. SDN provides various ben-
efits due to its inherent architecture wherein the 
control capabilities are shifted to a centralized 
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controller rather than embedded on the forward-
ing devices. It offers increased coverage and 
capacity in a cost-effective manner by providing 
global network visibility. For example, multiple 
sites across the city may be connected and con-
trolled from a centralized location, which in turn 
reduces the cost and complexity of deploying 
geo-distributed network resources. Moreover, the 
centralized control and visibility help to determine 
the best route according to the application flow 
requirement. It also helps to track the link health, 
congestion level, and application priority. SDN 
also allows the integration of services and cloud 
applications, which can run using a virtualized 
environment. It also provides the ability to provide 
multiple routes for a specific application, thereby 
providing a better customer experience when an 
application is accessed by multiple tenants. The 
key to the success of SDN is vendor neutrality 
and the use of open standards. Smart city appli-
cations can adopt multi-vendor architecture to 
reduce costs by pooling the computing, process-
ing, and storage functionality [4]. 

Besides providing manifold benefits, SDN 
architecture is susceptible to different attacks and 
security concerns. The SDN architecture acts as 
a double-edged sword, which provides various 
benefits we well as associated security challenges. 
Although the SDN controller can provision global 
security policies throughout the network, it also 
tends to be a single point of failure. An attacker 

can either gain access to the controller or itself be 
a controller in order to control the entire network. 
An attacker can try to overcome the scaling limit 
of the controller to enforce its own control and 
deny services to the underlying forwarding devic-
es and prospective applications. Although the 
programmability of SDN architecture is a major 
benefit to developers, attackers can easily tam-
per with the core functionality of the architecture 
[5]. Therefore, different compromised or malware 
infected applications can be installed on the con-
troller, which can lead to unexpected network 
behavior. A virtual switch can be deployed at the 
edge of a network to scrutinize and filter out the 
incoming traffic in order to direct the suspicious 
flows toward mitigation and inspection devices. 
On the contrary, the same switch can be com-
promised by malware to inject erroneous flow 
or trigger distributed denial of service (DDoS) 
attacks [6]. Moreover, the communication path 
between SDN planes opens up a new frontier of 
security concerns. Any adversary can disrupt the 
communication path between the different planes 
in order to create a vulnerability void that can eas-
ily be compromised. 

sdn AttAck Vectors And PotentIAl solutIons: 
PlAne-WIse AnAlysIs

Figure 2 shows the possible attacks at various lay-
ers of the SDN architecture. The plane-wise anal-

FIGURE 1. Smart city: applications and technologies.
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ysis of these attack vectors and possible solutions 
are discussed below.

APPlIcAtIon PlAne And northbound APIs
There are various applications and northbound 
application programming interfaces (API)s (Java, 
Python, REST, JSON, etc.) that an attacker can 
exploit in order to gain the network control 
through the controller. Accountability, access con-
trol, authorization, and authentication are major 
security issues that need to be addressed while 
designing security primitives for the application 
plane [7]. Some of the possible attacks at the 
application plane are described below [8–10].

Password Guessing or Brute Force: Using 
password guessing or brute force, an attacker can 
access the applications or northbound API, which 
may further lead to unauthorized access to the 
controller.

Application Exploitation: An unauthorized 
access to an application can be gained to perform 
illegal activities (malfunction, service disruption, or 
eavesdropping).

API Exploitation: A software component may 
contain malicious codes that can allow a hacker 
to perform illegal activities. API exploitation can 
be done at the northbound interface to disrupt 
the network flow.

Potential solutions for handling the above 
discussed attack vectors are presented below 
[8–10].

PermOF: A permission granting system for 
OpenFlow (OF) applications can be used to pro-
vide controlled access to the path and controllers 
using different permissions of read, notification, 
and write while allowing access to sensitive infor-
mation.

Flover: A model checking system ensures that 
the OF policies do not collide with the network 
security policies.

Switch-Based Rule Verification (SRV): It is 
used to detect the malicious rules in the network 
topology.

Efficient Naming Scheme for Flow Entry: In 
this solution, the new entry is added in the OF 
table using two main elements: the security policy 
creating a person’s role and the security privilege 
of that role.

control PlAne
The control plane of SDN is the prevalent choice 
of attackers for many reasons. For example, an 
adversary can target the controller to install new 
flow rules through different interfaces. If an adver-
sary overtakes the controller, it can control the 
traffic at its will, thereby bypassing the security 
policies deployed at various planes. The attackers 
overpower the controller’s scalability and control 
its availability to gain network control. Various 
attacks related to the control plane are described 
as below [8–10].

Controller Hijacking: Switches can be con-
nected to a malicious controller as the IP address 
between the switch and the controller are not 
checked due to improper TCP connections 
between them.

DDoS Attack: An adversary floods a channel 
with unauthorized requests to halt its normal func-
tioning.

ARP Spoofing Attack: An adversary can con-
trol the network illegally to steal or modify the 
data.

Network Manipulation: An attacker overtakes 
the SDN controller to produce false network data 
using which other chain attacks are initiated on 
the network.

The potential solution for handling these attack 
vectors at the control plane are presented below 
[8–10].

SDN-Guard: It is connected to the intrusion 
detection system at the control plane; it analyzes 
the incoming packet and informs about the prob-
ability of a threat.

Enhancing Scalability: Scalability can be 
improved by distributing the functions of the con-
trol plane, increasing the memory or processing 
power of the controller. For example, HyperFlow 
is a logically centralized but physically distributed 
control plane wherein decisions are made at the 
individual controller level [11].

Enhancing Availability: By modifying the OF 
model, the interaction between the control plane 
and the data plane is reduced. For example, in 

FIGURE 2. Attack vectors at different layers of SDN architecture.
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DevoFlow, some control is given to the switches, 
while the main network control is assigned to the 
controller itself.

dAtA PlAne And southbound APIs
At this level, an adversary can control the net-
work elements to install new flow rules in the flow 
tables or initiate DDoS attack [6, 11]. An attacker 
can easily compromise the forwarding devices to 
perform various attacks [8–10] discussed below:
• Traffic diversion: An attacker can control the 

network elements or forwarding devices to 
redirect the traffic flow and allow eavesdrop-
ping.

• Side channel attack: Latency detection 
between two elements in a channel can help 
the attacker know if there is any flow rule or 
not.

• DoS: An attacker floods a particular channel 
with unauthorized requests and packets that 
may disrupt the functioning of the complete 
transaction.

• ARP Spoofing Attack: Here, an attacker can 
control the network illegally to steal or modi-
fy the data.

• Traffic sniffing: It is used by a hacker to cap-
ture and analyze network communication 
information.

• Data Modification: During communication 
between the data plane and the control 
plane, data leakage is highly possible, and 
man-in-the-middle attack is used to gain 
complete access in the data plane.

• Flow table modification: In this attack, the 
flow tables installed at an OF switch are tam-
pered with or modified.

• Misconfiguration: By making Transport Layer 
Security (TLS) optional in the OF switches, 
the chance of misconfiguration increases 
due to vulnerabilities.
The potential solution for handling the above 

discussed attack vectors at data plane are present-
ed as below [8–10].

Veri-Flow: It is a tool placed between network 
elements and the SDN controller to detect mali-
cious rules installed at the forwarding devices.

Network Planning: The topology of the net-
work and distance between the switches and the 
controller must be taken into consideration. The 
minimum time a switch takes to transfer pack-
ets represents the lowest probability of being 
attacked as it becomes negligibly open for any 
attacker to view.

Mutual Authentication: Trust needs to be 
maintained between the control and data planes 
to avoid any attack. TLS and IPsec provide 
encrypted communication between the controller 
and switches, thereby providing integrity, confi-
dentiality, and protection.

blocksdn: blockchAIn As A serVIce for  
sdn AttAck MAnAgeMent

In this section, the blockchain process and its 
architecture is discussed followed by the attack 
scenarios generated at SDN layers. Moreover, the 
blockchain-based solutions for the mitigation of 
these attack scenarios are also described.

blockchAIn: bAsIcs, ArchItecture, And the Process

Whenever the thought of immutable distribut-
ed storage comes, the mind reflects back to the 
usage of blockchain technology [12]. Blockchain 
consists of blocks of data that are linked to each 
other using cryptographic hash functions. Each 
block of data constitutes some transactions that 
are recorded into it, a related Merkle root hash of 
the transactions (to maintain integrity), timestamps 
of the block creation, the hash of the block pre-
ceding the current block, and its own hash (for 
maintaining its integrity as a whole). Each block 
(before it is created) undergoes a process known 
as mining, which is undertaken by nodes in the 
blockchain called miner nodes. Every node has 
an equal opportunity of becoming a miner. The 
miners, upon successful mining of a block, receive 
some incentives as a reward for participating in 
the mining process, which is based on the consen-
sus mechanism [13]. 

Numerous consensus methods have been pro-
posed from time to time. For example, in proof 
of work, a miner has to prove its legitimacy by 
solving some complex mathematical problem that 
consumes resources. In proof of stake, the miner 
has to prove its stake holding to do the mining. 
Similarly, there are many other methods designed 
for mining purpose that have some pros and cons 
associated with them. Thus, depending on the 
kind of problem being dealt with, an appropriate 
mining mechanism can be selected [14]. Once a 
block is mined, it is added to the existing block-
chain available with all the participating nodes. 
Now, if at any node a block is manipulated, the 
blockchain is in an error state on that specific 
node, and therefore data tampering can be iden-
tified. The process flow and architecture of block-
chain transactions is depicted in Fig. 3. With the 
evolution of different applications in smart cities, 
two different variants of blockchain, public/per-
missionless and private/permissioned blockchains, 
have evolved over time.

Permissionless or Public Blockchain: This 
is the most common type of blockchain, used 
for famous cryptocurrency like bitcoin. Anyone 
can be part of this blockchain, and anyone can 
become a miner. It is a simple and very powerful 

FIGURE 3. Blockchain: the process flow and architecture.
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blockchain as it can scale up. But the scalability 
becomes a problem for this kind of blockchain as 
anyone can be part of the blockchain, so there is 
no control on whom to allow access and whom 
to restrict.

Permissioned or Private Blockchain: Con-
trary to the actual blockchain idea (i.e., to create 
a truly decentralized storage solution), permis-
sioned or private blockchains have evolved as 
a solution to address the issue of access control 
and authentication/authorization. The semidistrib-
uted blockchain variant popularly known as the 
permissioned blockchain has a central authority 
that controls the entry and access of the nodes 
in the blockchain. It helps in filtering out potential 
practitioners.

blockchAIn As A serVIce for MItIgAtIon of MAlWAre 
coMProMIsed sWItch AttAck At the dAtA PlAne

The most common attack at the data plane is 
malware injection via a compromised switch that 
is part of the normal flow. This attack scenario 

is depicted in Fig. 4a, which considers the case 
where host A (10.0.0.3) tries to send data pack-
ets to host B (136.110.56.3). In an ideal case 
of data flow, initially host A sends a packet (P) 
to the OFswitch (S1) to which it is connected 
directly. On receiving P from host A, the initial 
inspection of the packet is done at S1. Accord-
ing to the packet characteristics, the flow table is 
scrutinized to find a suitable matching entry. If a 
matching flow entry is available in the flow table, 
the corresponding action is performed. However, 
as depicted in the attack scenario, the matching 
flow entry was not found, so S1 sends a Packet 
IN request to the controller for installing a new 
flow rule. After this, the controller inspects P and 
checks the entire network topology to establish a 
suitable flow rule. Accordingly, it sends the flow 
rule in the form of Packet OUT to all the data 
plane devices that would be part of the transmis-
sion process. Eventually, the packet that started 
from host A will now pass through devices S1, S2, 
…, Sn to reach host B. This ideal scenario ends up 
with the consideration that any of these devices 
may be compromised. An attacker may break into 
any of the OF switches and then inject its own 
traffic, thereby dropping the original packet. In 
Fig. 4b, S3 is shown as a malware-compromised 
switch being controlled by an attacker. Now, ide-
ally S3 is supposed to relay the incoming pack-
ets to S4; however, it is sharing the data to the 
attacking node. In this case, the attacker node is 
also injecting its own traffic into the flow while 
dropping the original packets. 

To deal with this problem, the flow tables 
and the packets of the flow are secured using 
permissioned blockchain. Tasks like creating a 
new block and adding to a blockchain are limited 
to the controller in a permissioned blockchain 
manner. The consensus mechanism is realized 
using a proof of stake mechanism wherein the 
controller stakes its network topology reposito-
ry [14]. As shown in Fig. 4b, the process is initi-
ated when host A starts transmission to host B. 
Once the message reaches the directly connected 
S1, it checks the blockchain for the associated 
flow rule. If the rule is not found in any block, 
the request is forwarded to the controller with 
the sender’s and receiver’s IP addresses. The con-
troller (the miner for permissioned blockchain) 
collects all transactions coming to it since the cre-
ation of the previous block. Then it validates them 
based on the network topological view and adds 
the transaction into a new block. This new block 
is sent to all OFswitches under the control of the 
controller. The OFswitches uses the information 
from the blockchain and performs the action (i.e., 
forward, enqueue, drop, or modify). Now, if an 
attacker tries to capture packets and insert its own 
packets into the ongoing flow, the Merkle root 
hash gets changed as the source address of the 
newly added packets will be that of the attacker 
now. The blockchain immediately indicates that 
the hashes of some blocks are not matching the 
chained blocks, thereby preventing the attack.

The proposed blockchain architecture for han-
dling the problem of a malware-compromised 
switch using permissioned blockchain is shown in 
Fig. 5. The sequence of activities for the proposed 
scheme are described as:
• A switch (S) sends a request for joining the 

FIGURE 4. Malware-compromised switch in SDN architecture; a) Case1: mal-
ware-compromised switch; b) Case2: blockchain as a service for secure 
traffic flow.

(a)

(b)
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blockchain network to the controller, which 
passes it to the identity issuer located at the 
control plane.

• The purpose of the identity issuer is to verify 
the authenticity of a switch and then issue an 
identity (SID) that is valid for the considered 
blockchain.

• The identity issuer verifies the switch based 
on the authentication information provided 
using the zero knowledge proof concept. 
The zero knowledge proof is the method in 
which one party can prove its knowledge 
about some information X to another party, 
without revealing the value of X. The two 
communicating parties are referred to as 
prover and verifier. If the prover provides 
additional information about actual facts to 
the verifier, the zero knowledge proof struc-
ture is broken [15]. If the considered switch 
is successfully verified using zero knowledge 
proof, it is added to the list of verified switch-
es in the identity verifier’s database.

• On successful addition to the database, a 
pair of public and private keys are issued to 
the switch. The public key is also provided 
to all the switches that are part of the block-
chain.

• On receiving the keys, the requesting switch 
can carry out the transactions (eg., flow table 
update) on the blockchain by encrypting 
them using its own private key.

• Each member of the blockchain can now ver-
ify the switch that has issued the transaction. 
However, since the transaction is still not 
added to the blockchain, it is of no use yet. 
It has to be added into the blockchain by the 
miner or consensus node that resides at the 
control plane. The consensus node fetches 
all the unconfirmed transactions, which are 
still not added into the blockchain.

• Upon receipt of an unconfirmed transaction, 

the consensus node sends it to the identity 
verifier for verification.

• If the key is verified by the identity verifier, 
the information is sent to the consensus 
node for further processing of the transac-
tion. Otherwise, the transaction is declined, 
and the same is informed to the requesting 
switch.

• Now, the consensus node adds the trans-
action to the block being created at time 
t. Once the block is created, it is synchro-
nized to all the switches that are part of the 
permissioned blockchain. Now, each switch 
has the flow rules residing in the blockchain. 
If an attacker tries to inject some flow rule 
that is not legitimate, the modification will 
simply be reflected in the blockchain as the 
hash value of the blocks created thereafter 
will not match previous block hashes, there-
by breaking the fundamental linking of the 
blockchain.

blockchAIn As A serVIce for  
MItIgAtIon of ddos AttAck At the control PlAne

Among various SDN attacks, DDoS/DoS is one 
of the more popular kind. The attack scenario for 
generating a DDoS attack at the control plane of 
SDN through a malware-injected switch is shown 
in Fig. 6a. The network topology depicted for the 
attack scenario consists of three levels of switch-
es: 0, 1, and 2. The attack scenario proceeds in 
the following manner:
• An attacker captures the switch at level 0 

through a malware injection.
• The attacker starts a packet transfer request 

and sends it to switch AS1.
• Since there is now a matching flow available, 

AS1 sends a Packet IN request to the con-
troller for the flow information regarding the 
packet in question.

• The controller sends the flow details to the 

FIGURE 5. Blockchain as a service for switch verification and validation.
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switches that are expected to be part of the 
flow (i.e., AS1 and switches LS1, LS2, …., LSn 
located at level 2).

• The malicious script inserted into switch 
AS1’s operating system alters the flow infor-
mation received from the controller, chang-
ing the action type to forward; flood.

• The timer of the flow entry received from 
the controller at AS1 and level 1 switches is 
allowed to expire; then the attacker floods 
the received packet to the immediate neigh-
bors.

• The packet comprising a trojan is forwarded 
to the switches at level 1.

• When the packet comprising the trojan 
reaches the switches at level 1, the flow rule 
has already timed out and no longer exists 
on level 1 switches.

• Now, each switch located at level 1 sends 
Packet IN request to the controller.

• The controller sends the Packet OUT con-
taining the new flow entry to all switches at 
level 1 and the switches expected to be part 
of the flow.

• Now, the trojan alters the action field of the 
flow table at the level 1 switches and floods 
it to the neighboring level 2 switches in a 
similar way as was done in the fifth step.

• The level 2 switches, upon receiving the 
packets, send Packet IN requests to the con-
troller.

• The controller again calculates the path and 
sends Packet OUT to all level 2 switches and 
the switches that are expected to be part of 
the flow.

In this way, the malicious packet keeps on propa-
gating through the data plane level by level, and 
the magnitude of the attack grows exponentially, 
leading to the choking of the controller.

The proposed blockchain-as-a-service archi-
tecture to handle the DDoS attack is illustrated in 
Fig. 6b. The sequence of activities are described 
below.

• Initially, S requests to join the permissioned 
blockchain network, and the request is 
passed to the identity issuer.

• The identity issuer verifies the authenticity or 
legitimacy of the switch using zero knowl-
edge proof and then issues an identity (SID).

• If the verification is successful, S is added to 
the list of verified switches in the verifier’s 
database.

• After addition to the database, a pair of 
public and private keys are issued to S. The 
public key is also made available to all the 
switches that are part of the blockchain.

• Upon receiving the keys, the requesting 
switch initiates the transactions for flow 
table update (e.g., update of counter, timer, 
or action field for DDoS generation) on the 
blockchain by encrypting them using its own 
private key.

• Each member of the blockchain verifies the 
switch that has issued the transaction. How-
ever, since the transaction is still pending, 
it has to be added into the blockchain by 
the miner or consensus node. For this rea-
son, the consensus node fetches all the 
unconfirmed transactions that have yet to be 
added into the blockchain.

• The consensus node sends the unconfirmed 
transactions to the identity verifier for 
authentication.

• The identity verifier checks the blacklist log, 
which holds the malicious flows and switch-
es’ identities.

• If the unconfirmed transactions and the asso-
ciated switch identity are not available in the 
blacklist log, the transaction is approved, and 
the control is passed to the flow mapper for 
replication analysis. On the contrary, if the 
unconfirmed transactions and the associated 
switch identity are available in the blacklist, 
the transaction is declined.

• The flow mapper is used for replication 
analysis and compares the incoming flows 

FIGURE 6. Generation and mitigation of DoS/DDoS attack: a) DoS/DDoS attack generation; b) blockchain as a service for DoS/DDoS 
prevention. 

(a) (b)



IEEE Network • March/April 2020 19

from various switches with the threshold 
limit set by the controller. If a similar Packet 
IN request is coming from more than one 
switch at the same time, such requests are 
forwarded to a dummy virtual controller; 
otherwise, they are forwarded to the consen-
sus node for further processing.

• A dummy controller is deployed to fool the 
attacker as it makes the attacker presume 
that the transaction has reached the actual 
controller. It also relieves the central control-
ler from the load related to the suspicious 
requests. It checks all the incoming flow 
transactions and adds the multiple requests 
that are related to similar flow attributes 
to a batch. Now, this batch of similar flow 
requests is sent to a flow inspector for fur-
ther inspection.

• The flow inspector inspects the attributes of 
the requests for potential threat detection. If 
the batch of requests is malicious, they are 
dropped.

• Once the incoming requests are identi-
fied as malicious, the question arises as to 
whether these requests are generated by a 
single device or multiple devices. If all such 
requests are generated to the controller from 
a single device (DoS attack), this originator 
node is traced. The flow inspector checks for 
the actual originator node for these flows. 
Once identified, these originator switches 
are added to the blacklist log. In anoth-
er case, there may be different forwarding 
devices that have generated the requests 
to the controller (DDoS). In such a case, 
there has to be some machine that is con-
trolling the entire process. Such a machine 
or device is identified by the controller and 
then added to the blacklist log. In this way, 
all the switches working under the control 
of an attacking device are relieved, and they 
can perform normal activities. If the requests 
are not malicious, such information is sent to 
the consensus node for further processing of 
the transaction.

• Now, the consensus node adds the trans-
action to the block being created at time t. 
Once the block is created, it is synchronized 
to all the switches that are part of the per-
missioned blockchain. Each switch will have 
the flow rules residing in the blockchain 
available to it.

oPen Issues And chAllenges
Although the BlockSDN framework is capable of 
mitigating various attacks at SDN planes, there 
are still many open issues and challenges that 
must be handled effectively in the near future to 
make this framework more robust and reliable. 
The identified open issues and challenges are dis-
cussed below.

Storage: Storing blockchain in OF switches 
requires memory resources in large numbers, 
which can become a bottleneck as the size of 
blockchain increases.

Computational Load: The controller will have 
to manage the operations related to mining, valid-
ity issuing, and verification, which require superior 
computations.

Delay and Response Time: The proposed 

scheme enables addition of flow tables to block-
chain, which introduces delay in comparison to 
the line speed.

Centralized Miner: Permissioned blockchain 
can bring the network to one point at which it 
could fail. In future work, the mining work can 
be distributed over multiple controllers to enable 
decentralization.

Computational Complexity: The load of min-
ing, validity issuing, and verification at the con-
troller would eventually lead to an increase in the 
computational complexity.

Computational Cost: The additional use of 
computational resources can lead to an increase 
in the computational cost, which is not desired by 
any effective solution.

Interoperability: As the hardware devices and 
switches are not vendor-specific, different issues 
may arise related to interoperability that need to 
be handled effectively using appropriate mecha-
nisms. Even more, interoperability issues related 
to different blockchains should be handled care-
fully.

Multi-Controller Scenario: The proposed solu-
tion is not limited to a single controller and uses 
two controllers: an actual controller and a dummy 
controller (to foil the attacker). However, a deep 
analysis of the proposed solution is still required 
in a multi-controller scenario to understand the 
associated implications.

conclusIons
Smart city infrastructure is facing a tough chal-
lenge to provide reliable connectivity to handle 
the broad range of applications. The dependen-
cy of conventional network architecture on stan-
dard protocols and algorithms puts a limitation 
on the scalability and flexibility of service-orient-
ed architecture. To overcome these issues, SDN 
is widely adopted in industrial and commercial 
environments for provisioning of reliable and 
dynamic flow routes. However, besides being the 
top choice of network administrators, SDN has 
to deal with several security issues, which have 
opened the door to new research verticals. The 
dependency on a logically centralized controller 
adds to the concern as it is a popular target for 
attackers. In this article, a concise analysis on var-
ious prominent attack vectors for the SDN archi-
tecture is presented. From this analysis, it can be 
concluded that the SDN architecture has to pre-
vent vulnerabilities not only at different planes but 
also at the intermediate communication paths. 
Moreover, different possible solutions to cope 
with the discussed attack vectors are discussed. 
The consistency and integrity of flow entries have 
to be maintained in order to prevent manipula-
tion of traffic routes by attackers using malware 
codes. Two different cases of malware injection at 
the data and control planes have been described. 
In the first case, a malware-infected switch can 
inject its own traffic while dropping the original 
packets. In the second case, a malware-infect-

The proposed solution is not limited to a single controller and uses two controllers: an actual controller 
and a dummy controller (to foil the attacker). However, a deep analysis of the proposed  

solution is still required in a multi-controller scenario to understand the associated implications.
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ed switch can insert malicious script on various 
neighboring switches in order to trigger DDoS 
attack at the control plane. To prevent such attack 
scenarios, blockchain-based mitigation techniques 
have been designed in this article. Due to the cen-
tralized architecture of SDN, the permissioned 
blockchain model is used for the design of these 
techniques. Blockchain is an emerging technology 
that can be exploited further to handle different 
security concerns of the SDN architecture. Finally, 
the open issues and challenges that have come 
up due to the amalgamation of blockchain with 
SDN have been highlighted.
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