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Abstract—The emergence of cloud computing has made 

dynamic provisioning of elastic capacity to applications on-

demand. Cloud data centers contain thousands of physical 

servers hosting orders of magnitude more virtual machines 

that can be allocated on demand to users in a pay-as-you-go 

model. However, not all systems are able to scale up by just 

adding more virtual machines. Therefore, it is essential, even 

for scalable systems, to project workloads in advance rather 

than using a purely reactive approach. Given the scale of 

modern cloud infrastructures generating real time 

monitoring information, along with all the information 

generated by operating systems and applications, this data 

poses the issues of volume, velocity, and variety that are 

addressed by Big Data approaches. In this paper, we 

investigate how utilization of Big Data analytics helps in 

enhancing the operation of cloud computing environments. 

We discuss diverse applications of Big Data analytics in 

clouds, open issues for enhancing cloud operations via Big 

Data analytics, and architecture for anomaly detection and 

prevention in clouds along with future research directions. 

I. INTRODUCTION 

Information Technology (IT) systems are now critical 

components of almost every business, government, and 

societal applications.  IT does not just support the business, 

but IT itself is the business in many instances.  Today there 

are few business services on various IT systems for their 

delivery.  For example, banks rely on IT systems to process 

financial transactions, airlines rely on IT for their ticketing 

and timetabling, and even tollways rely on IT for their billing 

and safety systems.  For most companies, when the IT 

systems are down, the company cannot do business.  When 

the IT systems are not adequately designed, implemented or 

provisioned, the company can lose its business and customer 

satisfaction. 

For IT to do its job in delivering business services, it 

needs to meet the following requirements: 

 The IT systems need to be fortified against outages. 

Systems need to be provisioned with sufficient capacity 

to meet even the peak demand. If the capacity is 

insufficient business opportunities will be lost.  If the 

capacity is too great, operating overheads are increased. 

 The right services need to be provided to maximize 

business value. 

 Systems need to be configured for maximum efficiency 

and robustness. 

However, meeting these objectives in the modern 

enterprise environment is a challenging task.  First, IT 

systems are increasingly complex and interdependent.  To 

deliver a specific business service, there will be typically 

many different systems involved, each of which may be 

communicating and reliant on other third party systems.  The 

complexity and interdependence are the causes of many 

possible failures, making it difficult to implement robust 

services and to diagnose the root cause of failures.  Second, 

there is a high degree of uncertainty in workload demand.  

Demands are rarely uniform and predictable, but they tend to 

be highly irregular, bursty, and spiky in nature.  In particular, 

external events and anomalies can cause radical shifts in 

service demand.  As these events are very difficult to predict, 

the demand at a given point in the future will be unknown.  

System capacity is therefore likely to be over-provisioned or 

under-provisioned in the face of unexpected events.  

The rise of cloud computing made dynamic provisioning 

of elastic capacity on-demand possible for applications 

hosted on data centres. This is because cloud data centers 

contain thousands of physical servers hosting orders of 

magnitude more virtual machines that are allocated on 

demand to users in a pay-as-you-go model. 



 

Cloud data centers provide this elasticity through the 

notion of Infrastructure on Demand (IoD). However, not all 

systems are able to be scaled up by just adding more virtual 

machines. For these systems to be effective, they should be 

designed to be able to exploit IoD. Furthermore, even for 

systems that are able to exploit IoD, there is typically a delay 

in bringing new capacity online.  Therefore, it is essential, 

even for scalable systems, to project workloads in advance 

rather than using a purely reactive approach.  

From the above discussion, it can be noticed that current 

systems can benefit from the capacity of prediction of future 

application demand, infer the effect of such demand in the 

infrastructure and, consequently, in the applications, and 

detect anomalies in the infrastructure and applications in real 

time. These are problems addressed by researchers and 

practitioners in the areas of machine learning and data 

mining. Nevertheless, given the nature of modern cloud 

infrastructures (thousands of physical servers and virtual 

machines) generating real time monitoring information, along 

with all the information generated by operating systems 

(logs, system calls, etc.), applications (response times, 

latency), and user behavior (click analytics), this data reaches 

volume, velocity, and variety that is not efficiently handled 

by traditional machine learning and data mining techniques. 

By leveraging Big Data techniques and technologies 

(large-scale data mining, time-series analysis, and pattern 

mining), data such as event and log data can be captured at 

finer granularity with longer histories and analyzed in 

multiple projections. In this paper, we propose how the 

application of Big Data Analytics can enhance the operation 

of cloud computing infrastructures. We present various 

applications of Big Data analytics in clouds, open issues for 

enhancing cloud operations via Big Data analytics, an 

architecture able to tackle the problem of anomaly detection 

and prediction in clouds, and future research directions. 

The rest of this paper is organized as follows. Section II 

presents the motivation for this work. Sections III, IV, and IV 

discuss, respectively, the problems of anomaly detection and 

prevention, workload and performance prediction, and 

clustering, all in the context of improving operations of cloud 

computing services. Section VI presents architecture for 

anomaly detection and prevention in clouds, which is 

evaluated in Section VII. Section VIII presents future 

research directions in the topic and Section VIX concludes 

the paper. 

II. MOTIVATION 

Cloud computing enables users to acquire computational 

resources as services in a pay-per-use model, and this is 

generally called Infrastructure on Demand (IoD). The exact 

IoD that is commercialized as a service varies in one of three 

service models: Infrastructure as a Service (IaaS), Platform as 

a Service (PaaS), and Software as Service (SaaS). Each of 

these models provides a different view for users of what type 

of resource is available and how it can be accessed. 

In the IaaS model, users acquire virtual machines that run 

in the hardware of cloud data centers. Virtual Machines 

(VMs) can contain any operating system and software 

required by users, and typically users are able to customize 

the VMs to their own needs. Typically, IaaS providers charge 

users by the time that VMs run, and the exact cost per unit of 

time depends on the hardware resources (memory, CPU 

cores, CPU speed) allocated to the VM, which users can 

select among different amounts offered by providers. 

Therefore, the views users have of the system are restricted to 

Operating System and above levels. 

In the PaaS model, users are provided with an 

environment where applications can be deployed. At this 

level, users are able to collect metrics about application-level 

resource usage and performance. At the SaaS level, users 

access an application, being usually charged on a 

subscription basis. Metrics available at this level (if any) 

regard application-specific data. 

The view that cloud providers have, often, are those one 

level below the view that users have: IaaS cloud providers 

have metrics available of the platform level (e.g., resource 

usage of physical hosts), PaaS providers have infrastructure-

level information (e.g., container-level resource usage) and 

SaaS providers have platform-level information (e.g., 

response time of requests to the application). 

This different views and objectives of analysis of data 

affect the techniques that can be applied, their scope, and 

their results, as we discuss in the next sections. 

III. ANOMALY DETECTION AND PREVENTION 

Service Level Agreements (SLAs) are one important 

aspect of the engagement between cloud service providers 

and cloud users. Because there is a strong competition among 

providers in all service models, the damage to the reputation 

of a provider resulted from violating SLA terms can be 

substantial: It not only leads to penalties applied to providers, 

but also the risk of having the news of bad user experience 

spread through social media, resulting in loss of potential 

customers (and even existing ones). 

Therefore cloud service providers need to strive to meet 

SLAs. However, given the complexity and scale of cloud 

infrastructures, it is challenging for providers to guarantee 

that all systems and software are working according to the 

desired specification at all times. Thus, it is important that 

providers have mechanisms in place to detect abnormal 

activity in their infrastructure, platform, and software. 



 

In the context of this paper, we use the term “anomaly 

detection” to refer to detection of patterns of utilization of 

resources and metrics that deviate from the expected value. 

This can be caused by failures in hardware and software 

components, but also by an excess of users of the 

applications at higher levels. 

A challenging aspect of anomaly detection in clouds 

concerns the fact that effective methods need to be 

unsupervised [1]. This is because the variety of hardware, 

services, and applications, along with variation in application 

demand generate much more data that can be labelled by 

experts.  

Regarding anomaly detection for IaaS, earlier efforts in 

this direction [2][3] are suitable for small scale private 

clouds, but are not scalable enough to support state-of-the-art 

large-scale data centers that have many orders of magnitude 

more resources to be managed. This is because these early 

approaches assume communication models, such as all-to-all 

that are not scalable, or use methods such as k-Nearest 

Neighbors (k-NN), which have high asymptotic complexity 

and thus cannot generate output in the speed required for 

proper SLA compliance. 

Other approaches for the problem are based on time-

series analysis of the data [1]. These approaches operate with 

the assumption that patterns that are time-dependent emerge 

in the utilization of cloud services. Therefore, the time 

dimension cannot be ignored in the anomaly detection 

process. These approaches are achieving a degree of success 

in identifying anomalies in a single variable (usually, CPU). 

However, it is desirable that multiple attributes (i.e., memory, 

storage, network along with CPU) are considered at the same 

time to reduce the number of false-positives. 

A related problem to anomaly detection is anomaly 

prevention, which requires underlying support systems to 

detect and respond to the anomaly in the earliest possible 

time. This is challenging due to the sheer volume of 

monitoring data generated by large-scale data centers require 

near real-time solutions. PREPARE [4] achieves that for 

private IaaS. However, the suitability of the approach for 

large-scale public clouds is yet to be investigated. 

At a higher layer, PerfCompass [5] has been developed 

with the goal of detecting performance anomalies in 

applications. It tracks frequency and runtime of system calls 

to detect abnormal behavior of applications and to estimate 

the source of the fault as being internal or external to the VM 

hosting the offending service. 

In common with all approaches, there is the need to be 

able to define what an anomaly is and, in case of 

unsupervised learning, finding mechanisms that increase the 

accuracy of the method and provide a timely output. 

Open Problem #1: Dealing with unseen anomalies.  

Most approaches for anomaly detection and prevention in the 

cloud build the anomaly detection models based on the 

probability distribution of previous state information. 

Research is required on a reactive method that can 

dynamically decide when models need to be updated or built.  

Reactive approaches particularly contribute to the anomaly 

detection in real time, especially for the cold start period. For 

example, Self-Organizing Maps can be used in early stages, 

as it is capable of capturing complex system behavior while 

being computationally less expensive than comparable 

approaches such as k-nearest neighbor. In addition, sentiment 

analysis on Web and social networks data can be used to 

correlate the system anomalies with the behavior of web 

applications’ users in the cold start period, helping to 

differentiate anomalies caused by hardware issues from 

anomalies caused by used behavior. 

IV. WORKLOAD AND PERFORMANCE PREDICTION 

Techniques for prediction can be used in the context of 

cloud computing to help providers to optimize the utilization 

of resources. The rationale behind the idea is that, by 

correctly estimating the future demand for resources (by 

correctly predicting the expected workload of an application 

or service), the right amount of resources that delivery the 

expected SLA with minimum wastage in resource utilization 

can be achieved. 

These techniques, follow proactive approach, contrast 

with reactive approaches used in the management of cloud 

resources. Reactive approaches apply actions to decide the 

right amount of resources after issues with performance are 

detected. These techniques usually apply anomaly detection 

techniques discussed in the previous section. 

Neves et al. [6] developed Pythia, a system that predicts 

the communication needs of a MapReduce application, and 

then reconfigures the network, to optimize bandwidth 

allocation to the application. 

Islam et al. [7] applies neural network and linear 

regression to predict the moment where more resources will 

be necessary, what leads to the need of new virtual machines 

will be required. Thus, the boot process of VMs can be 

initiated before the need for resources, reducing the risk of 

SLA violations. 

Davis et al. [8] investigated the use of linear regression to 

predict resource utilization in clouds. Authors found that a 

weighted multivariate linear regression presented (MVLR) 

low average errors for short-term prediction with trends in 

the time series. Seasonality could be handled with an 

ensemble of scaled Fourier transform, MVLR, and weighted 

regression. 



 

Even in the case that system can correctly estimate how 

the load of applications and services will expand or shrink, 

there is still the need to apply corrective actions. This in turn 

requires systems to be able to estimate how changes in the 

underlying infrastructure (e.g., number of machines dedicated 

to an application and amount of CPU, memory, and network 

of such machines) will affect the performance of the elements 

in the upper layers. 

In common among all the approaches, there is the 

assumption that the states of infrastructure-level resources 

(e.g., CPU, memory, disk, and network) are good predictors 

of the state of the applications in the upper layers. This raises 

the first open problem we identify in this area. 

Open Problem #2: Correlation between infrastructure 

performance and application performance. Although 

intuitively one might expect a strong correlation between 

resource utilization at the infrastructure level and 

performance of applications, this assumption is based on too 

many simplifications. Firstly, it fails to consider the true 

nature of applications: complex cloud applications can 

experience stages of intense CPU activities and intense 

communication activity. This can be hard to be captured by 

single variable approaches. Also, the excess of load can be 

caused by some perturbation in the application itself (e.g., 

flash crowd) that cannot be solved solely by infrastructure-

level actions, but may require more complex actions at the 

platform level (e.g., scaling out and load balancing). 

Correlation of data of multiple levels to provide a holistic 

view of the system with the goal of improving performance 

of applications and meeting SLAs is an open question that 

needs to be investigated in more details. 

V. CLUSTERING 

Clustering is an unsupervised learning technique that 

enables grouping of objects by similarity: objects sitting in 

the same cluster are more similar among themselves than 

objects in different clusters [9]. 

Clustering has been applied in the context of cloud 

computing to enable optimization of execution of tasks (i.e., 

requests for the execution of applications, usually batch 

applications). In particular, clustering of tasks and jobs (i.e., 

group of tasks that are handled as a single unit) obtained from 

traces generated by Google have been used for identification 

of similarities regarding resources requirement and execution 

time [10][11][12]. This helps in the selection of machines 

where tasks should be executed and to estimate the execution 

time, an activity that is required to enable optimal scheduling 

of tasks in the available resources. 

Clustering has also been used to help in the problem of 

placement of large amounts of data required by scientific 

applications hosted in the cloud [13]. The aim of the work is 

reducing the amount of data movement required by the 

application, which also helps in reducing execution time of 

applications. Indirectly, it also helps in reducing network 

usage of data centers, what also contributes to improve 

overall performance of applications hosted in the data center. 

In a similar way, clustering has been also shown to be 

successful in helping in the problem of live migration of 

virtual machines [14]. Live migration consists in transferring 

a running virtual machine from one physical server to another 

while it is running (i.e., without perceivable interruption on 

the services provided by the applications running on the VM) 

[15]. In this particular approach, the goal was inter-cloud live 

migration, which means that the source and destination 

servers where located in different data centers. Clustering has 

been used to determine which machines should be 

simultaneously migrated. 

Open Problem #3: Other applications of clustering for 

resource management in cloud data centers. So far, 

clustering has been much less explored than prediction and 

regression. Given the scale of cloud infrastructures, 

clustering may be a valuable tool in reducing the complexity 

of management, by helping actions to be taken on a cluster-

basis rather than on more fine-grained basis. Therefore, if 

meaningful ways of classifying resources can be found, that 

are more coarse-grained than per user or per resource type 

(things that are known a priori and therefore do not require 

application of clustering), it is likely more efficient resource 

management might be achieved. 

VI. AN ARCHITECTURE FOR ANOMALY DETECTION AND 

REACTION IN IAAS CLOUDS 

Decisions towards selecting the appropriate cloud 

provider, the type of resource for a given application, number 

of cloud resources, and the moment when such resources 

should be requested have to be made by the user. Together, 

these activities are referred to as “dynamic cloud 

provisioning”. There is a lack of research/advances made in 

provisioning driven by prediction, detection, and reaction to 

anomalies. This is due to the system administrator's inability 

to scale the system if an abnormal peak of demand occurred 

before the development of cloud computing [16][17]. As 

cloud computing enables the infrastructure to be dynamically 

scaled, a new opportunity for achieving high Quality of 

Service (QoS) emerged. At the same time, as utilization of 

cloud resources incurs financial cost, scaling of resources 

should be the minimum possible that satisfies the business 

needs that is highly dynamic and unpredictable.  



 

The high level architecture of the framework is shown in 

Figure 1. The dashed lines limit the interface of the 

architecture, which is composed of Anomaly Prediction, 

Anomaly Detection, Workload Prediction, Deployment 

Planner, Provisioning and Resource Allocation, and 

Contextual Information. Besides these core elements of the 

architecture, the following are sources of information and 

external systems that support such architecture: 

 Contextual information: data used by our proposed 

system architecture to make decisions are supplied 

from different sources, such as: logs from the 

infrastructure operations (which may indicate 

unexpected behavior in the system); information 

about release of new products (that may cause an 

extra load of consumers interested in learning or 

buying such products); business metrics related to 

expected performance parameters of the system; and 

data from social networks (that may indicate the 

sentiment of customers to a new product and may 

affect the input workload of the system).  

 Baseline workloads: the baseline workloads are built 

with the patterns observed from historical data, and 

enable the determinations of fluctuations in the 

system input along the time. Such workloads provide 

insights on how the demand changes according to 

the period of the day, day of the week, season, 

months, etc. 

 Current Workload: this is the observed workload in 

the system in a given moment and it is acquired via 

monitoring tools. This information is constantly 

logged as historical data for future use. The 

framework uses this log to emulate real time loads to 

our proposed framework in order to enable the 

detection of ongoing anomalies.  

 IT Infrastructure: the target IT infrastructure for our 

proposed framework consists of a hybrid cloud, 

composed of both public cloud providers and in-

house infrastructure owned by the cloud service 

provider as well as legacy systems (either hardware 

or software) that are not cloud-ready. 

A. Anomaly Prediction 

The anomaly prediction module is responsible for 

estimating a possible anomaly in the workload to be received 

by the cloud service provider in a future moment and the 
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Fig. 1. Architecture for anomaly detection and reaction in clouds. 



 

confidence level in the occurrence of such event. It has two 

main sources of information: the baseline workloads, which 

supply an estimation of a typical workload for a particular 

time, day, and period of the year; and contextual information. 

This log data is used to build an analytical model using 

Markov models. The Markov model can be parametrically 

changed to create anomalous behaviors to study the 

robustness of our proposed system. 

Different sources of data may have different degrees of 

structure, and they can be available in different formats. 

Modelling them as Markov models overcome compatibility 

issues such as data formats and dimensionality. Therefore, 

the following actions are essential for enabling a correct and 

timely operation of the Anomaly Prediction module: 

 Selection of appropriate sources of data for 

prediction; 

 Filtering of data, so only data from relevant sources 

are considered for the prediction and modelling; 

 Extraction of data of interest from the filtered data, 

including Big Data analysis and data mining; 

 Actual prediction of the expected workload; 

 Actual prediction of failures in the system; 

 Determination of prediction confidence levels. 

Another important aspect to be considered during the 

anomaly prediction is that the result of the prediction must be 

timely, so that there is enough time for the rest of the 

components of the system to react.  

B. Anomaly Detection 

Because predictions are not always accurate, and 

unpredictable circumstances may affect the workload beyond 

a level that can be predicted, a second line of defense against 

loss of performance caused by anomalous workloads or 

failures in the system needs to be considered. 

In our framework, this second line of defense is carried 

out by the Anomaly Detection module. Operation of this 

module is based on the workload observed in a given time 

and baseline workloads. When these two measurements 

diverge by a specific margin, an alarm is triggered by this 

module to the Workload Prediction module. 

This is achieved with anomaly detection algorithms that 

analyze the described data to make a decision about the 

severity of the anomaly and the likelihood of its transiency. 

This is important because, if the anomaly is expected to incur 

for a short period of time, it is possible that it ceases before 

the environment finishes its scaling process to handle it. 

Furthermore, if the anomaly is not severe, it is possible that 

the available resources are able to handle it without the need 

of more resources. In this case, no alarm should be triggered 

and the system should keep its current state. 

C. Workload Prediction 

The earlier modules (Anomaly Detection and Anomaly 

Prediction modules) focus in determining patterns that may 

lead to an increased (or decreased) interest of users to 

applications hosted by the cloud service provider, an 

estimation of such interest, and the risk of failures in the 

system leading to anomalous behavior of the systems. It does 

not directly translate to a quantifiable measurement of 

performance of the system because of the unexpected 

workloads. 

The Workload Prediction module carries out the 

translation of observed or unexpected variance in estimations 

to the business impact of possible disruptions.  To achieve 

this, this module quantifies the expected workload in terms of 

requests per second along a future time window and 

combines this information with business impacts. Therefore, 

the output generated by this module (and the algorithms to be 

developed as part of its conception) is concrete business 

metrics that have value to managers of IT infrastructures.  

D. Deployment Planning 

The Deployment Planning component of our framework 

is responsible for advising actionable steps related to 

deployment of resources in a cloud infrastructure to react to 

failures or anomalies in the system. Automation engine in the 

Provisioning and Resource Allocation module of the system 

executes these steps. 

The tasks performed by this module are challenging as 

the goal of such plan is to mitigate the effect of variations in 

the system that disturb its correct operation. Correcting such 

anomalies means re-establishing a QoS level to users of the 

affected platform. However, enabling QoS requirements 

driven execution of cloud workloads during the provisioning 

of resources is a challenging task. This is because there is a 

period of waiting time between the moment resources are 

requested and the provision of resources by the cloud 

providers and the time they are actually available for 

workload execution. This waiting time varies according to 

specific providers, number of requested resources, and load 

on the cloud. 

As our framework cannot control waiting times, this time 

has to be compensated by other means. Possible approaches 

are increasing the number of provisioned resources to speed 

up the workload delayed because of delays in the 

provisioning process or to predict earlier the resource demand 

albeit with low accuracy and probability. However, the first 

solution may not resolve the problem for most web 

applications because users affected by the delays are likely to 

abandon the access to the service, which results in loss of 

opportunity for revenue generation in the affected system. 

Another challenge for the deployment planning process 



 

concerns selection of the appropriate type of resource to be 

allocated. Our second approach overcomes the problem but 

may be slightly more expensive due to potential 

overprovisioning of resources. As our proposed algorithms 

are based on learning techniques, these methods are likely to 

improve their quality over the time by observing the 

performance of the system. 

Different cloud providers have different offers in terms 

of combination of CPU power, number of cores, amount of 

RAM memory, and storage of their virtual machines. 

Providers also offer multiple data centers in different 

geographic locations. This affects the expected latency for 

communication and data transfer between users and resource 

and consequentially observed response times. Therefore, the 

Deployment Planning module needs to describe resource in a 

vendor-agnostic way, so the Provisioning and Resource 

Allocation module can translate the description to a concrete 

vendor offer once a vendor is selected. 

E. Provisioning and Resource Allocation 

This module is responsible for the enactment of the 

provisioning planning generated by the framework. It 

interacts with different public cloud providers and resource 

management system of the public cloud in order to enable the 

realization of the planning decision performed by the 

Deployment Planner module. Furthermore, different 

combinations of features have different costs. In order to 

meet user budget constraints, the planning algorithm has to 

take into account the combination of resources that meet 

performance requirement of the estimated workload at the 

minimum cost. More specifically, this component has the 

following functions: 

 Translation of resource requirements from a vendor-

agnostic description to specific offers from existing 

cloud providers; 

 Selection of the most suitable source(s) of resources 

based on price, latency, resource availability time, 

and SLA; 

 If possible, perform automatic negotiation for better 

offers from providers with compromising SLA. 

 
Open Problem #4: Leveraging existing Big Data ecosystem 

to implement advanced analytics solutions supporting Big 

Data-enhanced cloud computing. There is huge ecosystem of 

(sometimes competing) Open Source technologies that are 

widely adopted for all layers of Big Data analytics. This 

include Hadoop/YARM (MapReduce and other parallel 

programming models), Storm (stream processing), Spark 

(analytics), Pig and Hive (high level query languages), 

Mahout (high level analytics tasks), and Cassandra, 

CouchDB, BlinkDB, HDFS (file systems and NOSQL 

databases). The question is how to leverage these tools to 

enable complex analytics that enables SLAs to be met with 

minimum resource consumption. 

VII. PERFORMANCE EVALUATION 

In this section, we present an evaluation of the 

conceptual framework described in the previous section. In 

particular, we focus in the Workload Prediction module, 

which is the core of the proposed framework.  

This evaluation experiment leverages the methodology 

we utilized in our earlier work [18]. However, it focusses on 

different objectives, and utilizes a different dataset from the 

same source. 

The workload utilized has been obtained from the page 

view statistics from all Wikimedia projects
1

 on 1
st
 of 

September, 2014. The information is organized by the 

language of the accessed document (web page, figure, text 

file, etc.). We use the data about http access to Chinese 

language documents. To gain insight of the traffic for each 

project for the whole day we analyzed traces which consist of 

24 compressed files each containing 160 million lines 

(around 8 GB in size). We utilized Map-Reduce on a cluster 

of 4 nodes to calculate the number of requests more 

effectively and faster. 

The traces provide hourly access information and they 

were converted to access per second using a log-normal 

distribution, and then consolidated in 5-seconds intervals for 

processing purposes. We utilize the first 17 hours for training 

purposes and the next 8 hours for testing. Because of the 

time-series nature of the workload, we utilize the ARIMA 

method [19] for fitting and prediction. This method 

decomposes the time-series into three components. The first 

is an Autoregressive component of order p that models a 

point as a linear combination of p previous observations. This 

component can be Integrated d times to eliminate stationarity 

(as ARIMA processes need to be non-stationary). The third 

component is a Moving Average of order q component that 

models a point as a linear combination of the q previous 

observation errors. 

The fitting process is carried out with different (p, q, d) 

parameters. The module needs to use the values that 

minimize some error measurement (for example, Mean 
Square Error) to increase the framework’s accuracy and 

these value are likely to be different for different workloads 

(which, in the context of this experiment, are the different 

languages of documents accessed by users). Errors are 

presented in Table I, whereas Figure 2(a) show the effect of 

different parameters in the fitting process for all the training 

                                                           
1
 Available at http://dumps.wikimedia.org/other/pagecounts-raw/ 



 

period. To enable a better visualization, Figure 2(b) presents 

a 1-hour snapshot of the same data. 

Next, we evaluate the effect of the difference in accuracy 

among the models in the quality of the provisioning and 

consequently in the Quality of Service to end user. We 

utilized the CloudSim simulator [20] to model a data center 

with 500 computers, each with 8 cores, 16 GB of RAM and 1 

TB of storage. In the simulation, workload has been 

submitted according to the traces and the provisioning has 

been carried out according to the prediction of each mode. 

Provisioning is carried out with virtual machines that use 1/8 

of the available resources of the host, so each VM has 

exclusive access to one core. A routine for adjusting the 

provisioning is invoked every 5 minutes for a period of 5 

minutes ahead, so there is enough time for new VMs to be 

started if necessary. Each request is assumed to take 100ms 

and the target QoS for response time is 500ms. 

The provisioning is carried out based on the estimated 

load by the different ARIMA models, following the 

procedure introduced in our previous work [21]. The output 

metric are the number of VM hours require to process the 

workload (normalized by the number of hours required to 
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Fig. 2. Accuracy of different ARIMA models. (a): all the training period. (b): 1 hour snapshot. 

 



 

meet the QoS via static provisioning). Furthermore, because 

prediction techniques are subject to inaccuracies, we also 

report the normalized number of requests rejected due to 

prediction errors. 

Results are shown in Table I, which shows that a better 

fitting results in a better resource utilization: although the 

model with smallest MSE does not result in the minimum 

resource usage, it results in the minimum rejection rate, what 

means that the number of resources provisioned was the one 

that, among the alternatives, provided the best QoS: two 

models led to smaller number of resources provisioned, at a 

cost of higher rejection (because the available machines were 

not enough to handle all the requests) whereas one model 

resulted in higher VM utilization and slightly higher rejection 

rate, meaning that extra VMs were not provisioned in 

appropriate times. 

VIII. FUTURE DIRECTIONS 

The complete realization of the potential of proposed 

architectural framework and goals require further 

investigation in the area of anomaly detection and prevention. 

The key challenges are outlined below. 

 Dealing with CPU spikes: efficiently dealing with 

CPU spikes requires the availability (or 

development) of the resource consumption model of 

the application that can efficiently detect CPU load 

anomalies in a timely manner. Workload anomaly 

detection methods that use Markov chain models, 

although having several advantages, are not capable 

of dealing with CPU hogs as they are time 

consuming. One can investigate a regression-based 

transaction model to detect anomalies in a timely 

manner. Alternatively, one can look into Deep 

Learning approaches that have shown good potential 

in detecting anomalies in cloud environments. 

However, they have to be further improved to handle 

unseen anomalies such as One-Class SVMs. 

 Root cause analysis: in real-world scenarios, 

changes in one application tier often can affect other 

tiers. Therefore, mining dependencies between 

anomalies of different application tiers is another 

promising research direction. Once obtained, they 

can be modeled and stored with the help of 

knowledge representation languages in the system. 

The knowledgebase can be later used to identify the 

root cause of anomalies or detect anomalies faster. 

 System metric anomaly detection versus workload 

anomaly detection (black, gray, or white box): it 

would be interesting to compare the performance of 

systems with approaches that perform anomaly 

detections on workloads (request arrival time) or 

systems that consider resource consumption 

anomalies. Workload anomaly detection tends to 

provide an effective method when applied in web 

applications. The reason is that it enables prediction 

of how the load transfer from one node to another 

and therefore how an anomaly in load and resource 

consumption in one tier can lead to anomaly in the 

next tier. 

 Multi-resource anomaly detection: considering 

multiple resources in anomaly detection has several 

advantages, as it is important to find out which 

resource contributes more to anomalies that are 

detected in application QoS. Considering only one 

resource at a time causes an unnecessary delay that 

can be prevented by checking distances among ranks 

of metrics and triggering scaling of CPU and 

memory simultaneously.  

IX. CONCLUSIONS 

The sheer volume of structured and unstructured data 

generated by machines and humans give raise to the Big Data 

era. Businesses in many sectors such as finance, marketing, 

retailing, insurance, and real estate are just starting to 

leverage these data for commercial advantage. Similarly, 

governments and organizations are starting to build smart 

cities and e-health solutions that leverage Big Data to 

improve quality of life of the population. It is natural that the 

ICT industry—which supplies the underlying capability to 

enable Big Data—would also leverage it for its own benefit. 

In this paper, we presented the challenges and 

opportunities of enhancing the operations of cloud data 

centers via Big Data analytics. Cloud data centers usually 

contains thousands to tens of thousands of physical 

(computing and networking hardware) and virtual (virtual 

machines and virtualized network functions) elements that 

are used by a variable number of users subject to SLAs. To 

enable services to comply with SLAs with minimum resource 

usage, techniques such as anomaly detection and prediction, 

TABLE I  

PERFORMANCE OF DIFFERENT ARIMA MODELS. 

Model MSE Norm. VM 

hours 

Norm. 

rejection 

ARIMA (1,1,1) 82.89775 0.7178 0.94 

ARIMA (1,2,1) 55.75667 0.6518 0.92 

ARIMA (2,1,2) 82.93857 0.6158 0.96 

ARIMA (2,2,2) 82.80875 0.58953 1.00 

 



 

regression and prediction of workloads and performance, and 

clustering can be used. Each of these techniques has been 

discussed, and an architectural framework for anomaly 

detection and prevention has been proposed. 

Finally, a list of open issues and future research 

directions are identified. They show that there are still many 

open questions that need to be addressed to enable cloud 

infrastructures to get the most of Big Data analytics. 
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