
Autonomic Cloud Computing: Open Challenges and Architectural Elements

Rajkumar Buyya
1,2

, Rodrigo N. Calheiros
1
, and Xiaorong Li

3

1
Cloud Computing and Distributed Systems (CLOUDS) Laboratory

Department of Computing and Information Systems

The University of Melbourne, Australia

E-mail: {rbuyya, rnc}@unimelb.edu.au

2
Manjrasoft Pty Ltd, Melbourne, Australia

3
Institute of High Performance Computing

A*STAR Institute, Singapore

E-mail: lixr@ihpc.a-star.edu.sg

Abstract—As Clouds are complex, large-scale, and

heterogeneous distributed systems, management of their resources

is a challenging task. They need automated and integrated

intelligent strategies for provisioning of resources to offer services

that are secure, reliable, and cost-efficient. Hence, effective

management of services becomes fundamental in software

platforms that constitute the fabric of computing Clouds. In this

direction, this paper identifies open issues in autonomic resource

provisioning and presents innovative management techniques for

supporting SaaS applications hosted on Clouds. We present a

conceptual architecture and early results evidencing the benefits of

autonomic management of Clouds.

Keywords: Cloud Computing, Data Centers, Service Level

Agreements, Resource Provisioning, and Autonomic Management.

I. INTRODUCTION

Cloud computing “refers to both the applications

delivered as services over the Internet, and the hardware and

system software in the data centres that provide those

services”, according to Armbrust et al.[1], and “is a utility-

oriented distributed computing system consisting of a

collection of inter-connected and virtualized computers that

are dynamically provisioned and presented as one or more

unified computing resource(s) based on service-level

agreements established through negotiation between the

service provider and consumers” according to Buyya et al.

[2]. Both definitions capture the real essence of this new

trend in distributed systems, where both software applications

and computing infrastructure are moved from private

environments to third party data centres, and made accessible

through the Internet. Cloud computing delivers infrastructure,

platform, and software (applications) as subscription-based

services in a pay-as-you-go model. In industry, these services

are referred to as Infrastructure as a Service (IaaS), Platform

as a Service (PaaS), and Software as a Service (SaaS),

respectively.

To support end-user applications, service providers such

as Amazon [3], HP [4], and IBM [5] have deployed Cloud

data centers worldwide. These applications range from

generic text processing software to online healthcare. Once

applications are hosted on Cloud platforms, users are able to

access them from anywhere at any time, with any networked

device, from desktops to smartphones. The Cloud system taps

into the processing power of virtualized computers on the

back end, thus significantly speeding up the application for

the users, who pay for the actually used services. However,

management of large-scale and elastic Cloud infrastructure

offering reliable, secure, and cost-efficient services is a

challenging task. It requires co-optimization at multiple

layers (infrastructure, platform, and application) exhibiting

autonomic properties. Some key open challenges are:

• Quality of Service (QoS). Cloud service providers (CSPs)

need to ensure that sufficient amount of resources are

provisioned to ensure that QoS requirements of Cloud

service consumers (CSCs) such as deadline, response

time, and budget constraints are met. These QoS

requirements form the basis for SLAs (Service Level

Agreements) and any violation will lead to penalty.

Therefore, CSPs need to ensure that these violations are

avoided or minimized by dynamically provisioning the

right amount of resources in a timely manner.

• Energy efficiency. It includes having efficient usage of

energy in the infrastructure, avoiding utilization of more

resources than actually required by the application, and

minimizing the carbon footprint of the Cloud application.

• Security. Achieving security features such as

confidentiality (protecting data from unauthorized

access), availability (avoid malicious users making the

application unavailable to legitimate users), and reliability

against Denial of Service (DoS) attacks. The DoS is

critical because, in a dynamic resource provisioning

scenario, increase in the number of users causes automatic

increase in the resources allocated to the application. If a

coordinated attack is launched against the SaaS provider,

the sudden increase in traffic might be wrongly assumed

to be legitimate requests and resources would be scaled

up to handle them. This would result in an increase in the

cost of running the application (because provider will be

charged by these extra resources) as well as a waste of

energy.

As Clouds are complex, large-scale, and heterogeneous

distributed systems (e.g., consisting of multiple Data Centers,

each containing 1000s of servers and peta-bytes of storage

capacity), management is a crucial feature, which needs to be

automated and integrated with intelligent strategies for

dynamic provisioning of resources in an autonomic manner.

Effective management of services becomes fundamental in

platforms that constitute the fabric of computing Clouds; and

to serve this purpose, autonomic models for PaaS (Platform

as a Service) software systems are essential.

Autonomic systems exhibit the ability of self-monitoring,

self-repairing, and self-optimizing by constantly sensing

themselves and tuning their performance [6]. Such autonomic

features are also exhibited by market economy, where

resources/services are priced so as to maintain equilibrium in

the supply and demand. Clouds constitute an interesting

venue to explore the use of autonomic features, because of

their dynamism, large scale, and complexity.

In this direction, this paper presents our early steps

towards innovative autonomic resource provisioning and

management techniques for supporting SaaS applications

hosted on Clouds. Steps towards this goal include (i)

development of an autonomic management system and

algorithms for dynamic provisioning of resources based on

users’ QoS requirements to maximize efficiency while

minimizing the cost of services for users and (ii) creation of

secure mechanisms to ensure that the resource provisioning

system is able to allocate resources only for requests from

legitimate users. We present a conceptual model able to

achieve the aforementioned goals and present initial results

that evidence the advantages of autonomic management of

Cloud infrastructures.

II. RELEVANT WORK

Autonomic management [6], [25] is a desired feature for

any large scale distributed system and even more important

in dynamic infrastructures such as Clouds. Autonomic

systems are self-regulating, self-healing, self-protecting, and

self-improving. In other words, they are self-managing.

Initial investigation on developing autonomic based systems

in both academia and industry has been already carried out.

Parashar and Hariri [11] reported an overview of the early

efforts in developing autonomic systems for storage

management (OceanStore [7], Storage Tank [8]), computing

resources (Oceano [9]), and databases (SMART DB2 [10]).

Computing Grids have benefited from the application of

autonomic models for management of resources and the

scheduling of applications [11], [12], [13], [14]. Even though

none of these platforms considers energy-efficiency as a

high-priority parameter to be optimized, the success in

autonomic management for Grid applications demonstrates

potential of integrating autonomic models in Cloud

Computing.

CometCloud [15] implements an infrastructure for

autonomic management of workflow applications on Clouds.

Recently other works [16],[17],[18] explored provisioning of

resources for Grid and Cloud applications. However, they do

not support an integrated solution for security-enforced, cost-

effective, energy efficient, and dynamic resource

provisioning, which are key open issues.

Solutions for secure Cloud platforms have been proposed

in the literature [19]. However, existing works are yet to

address issues related to recognition of attacks against SaaS

with the aim of exploiting elasticity. A step towards this goal

has been given by Sqalli et al. [20]. Their EDoS-Shield

system is able to detect and mitigate distributed denial of

service attacks against Clouds. However, research is required

to determine if the same or similar techniques can be applied

for thwarting attacks against elastic infrastructures.

Amazon Elastic MapReduce has enabled its customers to

dynamically modify the size of their running job flows. Using

their API, customers have the flexibility to add or remove

nodes based on the changing capacity needs of their job flow.

However, this service does not offer automatic provisioning

of new nodes based on end-user demands/QoS.

III. ARCHITECTURE FOR AUTONOMIC CLOUD

MANAGEMENT

As we aim towards the development of autonomic

resource provisioning and management techniques for

supporting SaaS applications hosted on Clouds, the following

aspects were identified as essential:

Dynamic Resource Provisioning Algorithms

SaaS Applications Portal

SaaS/PaaS Integration Layer
P

a
a

S
S

a
a

S

Autonomic Management System

Application

Scheduler

- User QoS

- Overall Cost

- Energy efficiency

- Data location

Integration

Private Cloud Public Clouds

Ia
a

S

Datacenter A

PaaS/IaaS Integration Layer

Security and Attack Detection

PaaS Framework

Datacenter B

Healthcare Spatial-Temporal Analytics

Workflow

Figure 1. System architecture for autonomic Cloud management.

• Development of an autonomic management system and

algorithms for dynamic provisioning of resources based

on users QoS requirements to maximize efficiency while

minimizing the cost of services for users.

• Creation of secure mechanisms to ensure that the resource

provisioning system is able to allocate resources only for

requests from legitimate users.

Figure 1 shows the high-level architecture enabling

autonomic management of SaaS applications on Clouds. The

main components of the architecture are:

• SaaS Application Portal: This component hosts the SaaS

application using a Web Service-enabled portal system.

Users or brokers acting on their behalf submit service

requests from anywhere in the world to these SaaS

applications.

• Autonomic Management System and PaaS Framework:

This layer serves as a Platform as a Service. Its

architecture comprises of autonomic management

components to be integrated in the PaaS level, along with

modules enforcing security and energy efficiency. User

QoS-based application scheduler and dynamic resource

provisioning algorithms are added as plug-ins.

• Infrastructure as a Service: This layer comprises

distributed resources provided by private (enterprise

networks) and public Clouds. Enterprise networks could

leverage the resources in public Clouds by leasing them

according to their user requirements, as and when needed.

SaaS is described as a software application deployed as a

hosted service and accessed over the Internet. This model

provides a scalable way for service providers and ISVs

(Independent Software Vendors) to deliver their existing

and/or new software applications to end-users without having

to worry about the expertise or the capital budget to purchase,

install, and manage large IT infrastructure. In order to

manage the SaaS applications in large scale, the PaaS layer

has to coordinate the Cloud resources according to the SaaS

requirements, which is ultimately the user QoS. This

coordination requires the PaaS layer to handle the scheduling

of applications and resource provisioning such that the user

QoS is satisfied and also it does not make the provisioning

too costly to the PaaS service provider.

The autonomic management system incorporates the

following services in the PaaS layer: Security and attack

detection, application scheduling, and dynamic provisioning.

The autonomic manager is composed by the following

components, with specific roles:

• Application Scheduler. The scheduler is responsible for

assigning each task in an application to resources for

execution based on user QoS parameters and the overall

cost for the service provider. This scheduler is aware of

different types of applications such as independent batch

applications (such as Bag of Tasks), web multi-tier

applications, and scientific workflows (where tasks have

dependencies that have to be managed) executed in

Clouds. Depending on the computation and data

requirements of each application, it directs the dynamic

resource-provisioning component to instantiate or

terminates specified number of compute, storage, and

network resources while maintaining a queue of tasks to

be scheduled. Execution of the application also may

require data transfer between Clouds, which is also

handled by this component. This logic is embedded as

multi-objective application scheduling algorithms [21].

This heuristic-based algorithm focuses on QoS

parameters such as response time, cost of service usage,

energy consumption, maximum number of resources

available per unit price, and penalties for service

degradation.

• Energy-efficient scheduler. One of the main objectives to

be optimized during the application scheduling process is

energy utilization. Applications need to be scheduled in

resources in such a way that their total energy

consumption is minimized. However, the algorithm has to

achieve this goal without compromising SLAs and cost.

This is a multi-objective optimization problem with

conflicting goals. An aspect of this problem that makes it

even more challenging is the fact that energy

consumption holds a non-linear relationship with cost and

performance. Search for a solution for such a challenging

and relevant problem is one of the main challenges of this

research.

• Dynamic Resource Provisioning Algorithms. This

component implements the logic for provisioning and

managing virtualized resources in private and public

Cloud environments based on the resource requirements

as directed by the application scheduler. This is achieved

by dynamic negotiation with Cloud IaaS providers for the

right type of resource for a certain time and cost by taking

into account the past execution history of applications and

budget availability. The resource-provisioning module is

complemented with prediction-based algorithms that rely

on market-oriented provisioning practices, for handling

any change in spot prices. In particular, these algorithms

perform the following tasks:

o Dynamic resource allocation: Scaling in/out

(expanding/shrinking of resources) will be

carried out using an online instantiation

mechanism where compute, storage and network

services will be leased on the fly. Resources are

terminated once they are no longer needed by the

system.

o Prediction for resource selection: As the cost of

using resources depends on the duration and type

of resources provisioned, a prediction

mechanism will be implemented that takes into

account historic execution statistics of SaaS

applications. Based on prediction of time and

cost, this component will control the resource

plug-in component to allocate either the spot-

instances or the fixed price instances of IaaS

resources. We also plan to conduct resource-

pricing design based on these predictions. The

prediction will be based on the supply and

demand for resources, similar to market-oriented

principles used for reaching equilibrium state [2].

• Security and Attack Detection: This component

implements all the checks to be performed when requests

are received in order to evaluate their legitimacy. This

prevents the scaling-up of resources to respond to

requests created with the intention of causing a Denial of

Service or other forms of cyber-attacks. The module must

be able to distinguish between authorized access and

attacks, and in case of suspicion of attack, it can either

decide to drop the request or avoid excessive provision of

resources to it. To achieve it, techniques already in use for

detection of DDoS attacks need to be adapted to be able

to handle exclusive characteristics of Cloud systems. In

this sense, this module has to work as a “DDoS Detection

as a Service” for the PaaS middleware.

IV. DATA ANALYTICS WORKFLOW ENGINE: A CASE STUDY

In order to demonstrate the importance and the impact of

autonomic Cloud management, we present in this section a

case study of autonomic Cloud management in the context of

workflow applications for spatial-temporal data analytics for

online prediction of dengue fever outbreaks in Singapore and

their deployment on Clouds.

Figure 2. Flows of workflow-enabled scalable spatial-temporal analysis.

Dengue is a mosquito-borne infectious disease that

occurs especially in tropical regions such as South America

and Southeast Asia. According to the World Health

Organization (WHO), there are 2.5 billion people in the

world living in dengue endemic places, which makes it a

major international public health concern. This is further

aggravated in densely populated regions, where the disease

can spread quickly. Therefore, prediction and control of

dengue is a very important public health issue for Singapore

[22], and this motivated the development of prediction

models for dissemination of the disease in the country.

The application data requirement comprises multi-

dimensional data containing information such as reported

dengue incidents, weather parameters, and geographic

information. Incidence data can reach hundreds of MB, and

the associated weather data can easily take up a few GBs. For

example, at a daily resolution, a single output variable from

the ECHAM5 climate model comprises 300,000 spatial

points multiplied by 365,250 temporal intervals per century

per scenario. Application users must be able to trace the

number of dengue incidences by day, week, month, and year

from 1960s to 2011.

The processing time required to extract the data, model

it, and interpolate for visualization is about 30 minutes in

total for processing 1-day data set on a workstation with an

Intel dual core 2.93GHz CPU and 4GB of memory.

Moreover, in order to be of practical value in the case of

dengue outbreak, the system must be able to dynamically

allocate resources and optimize the application performance

on Cloud infrastructures (private, public, or hybrid Clouds) to

reduce the processing time and enable real-time spatial and

temporal analysis with shorter turnaround time.

From the above, we can clearly notice that autonomic

Cloud technologies are paramount for the goals of timely

prediction of dengue dissemination, so that health agencies

can be mobilized to react to the incident. We now describe

our Cloud-enabled Workflow Engine used in this case study.

A. Cloud Workflow Engine and Autonomic Management

The Cloudbus Workflow engine [24] is an extension of a

Grid-based workflow management system [23] supporting

the execution of workflows in private, public, and hybrid

Clouds. Initially, it supported features such as GUI-based

description of workflows, application composition, data

movement across Clouds, and task scheduling and

management. It has been further extended to incorporate

autonomic management capabilities based on iterative

optimizations.

The overview of the autonomic workflow management

system and its use in data analytics application is depicted in

Figure 2. The performance requirements are achieved by

partition of the data in different parallel tracks and execution

of such tracks on multiple virtual machines simultaneously.

To achieve this, the system autonomically optimizes its

performance and finds the optimal provisioning for

utilization and performance optimization.

The iterative optimization is designed for workflow

analytical applications in which a subset of the analytic

tasks/functions is repeated during the analytics, forming a

sort of “loop” in the workflow execution. When such loops

are detected in the applications, the workflow engine profiles

the early execution of tasks, storing information about their

execution time. This profile information is used for optimal

provisioning purposes in terms of cost and execution time

(makespan). Hence, the performance of running the data

Step 0. Initiate the Cloud resources to execute the
tasks.

Step 1. Apply a greedy algorithm to minimize
the makespan ignoring cost and resource constraints.

Step 2. Apply an initial schedule that fully utilize the
allocated machines by scheduling extra tasks to
resources as long as it does not increase the makespan.

Step 3. Analyze whether downgrading the public
Cloud instance type still enable completion of the
workflow within the same time slot. If so, utilize the
simpler and cheaper instance type.

Step 4. Run the tasks on the schedule nodes.

Figure 3. Algorithm for iterative optimization.

Public Cloud
AWS EC2 Asia Pacific

Private Cloud
A*STAR Institute, Singapore

25 Large
Instances…

Workflow

48 VMs
…

Cloudbus Workflow Engine

Figure 4. Experimental testbed.

Figure 5. Iterative workflow model of the dengue fever

prediction model used in the experiments. The iteration

happens between tasks H and A, as depicted in the figure.

analytics program is continuously improved by the system,

which autonomically scales up and down provisioned

resources to meet the users’ performance requirements.

For the purposes of performing the dynamic

provisioning, the optimization problem solved by the

scheduler consists of an initial schedule S that allocates all

the workflow tasks from the workflow graph G to Cloud

resources considering precedence constraints. We define

Time t(S) and Cost m(S) as the completion time and monetary

cost of the schedule S, respective. The iterative optimization

technique aims to derive an optimal schedule Sopt to achieve

tmin(SG) and mmin(SG). As the problem of mapping workflow

tasks onto distributed heterogeneous resources to achieve

multi-objective optimization is NP-complete, we proposed

a heuristic algorithm to achieve sub-optimal solution and

improve the results iteratively during the workflow

execution. The algorithm is described in Figure 3.

The autonomic adaptive workflow engine design allows

the system to select the most suitable resources according to

the user requirements (e.g., update frequency, cost, etc),

schedule the privacy-sensitive data in private resources, and

tolerate faults when failure happens. Provisioning of Cloud

resources and scheduling of workflow tasks are automatically

performed based on a budget constraint, and the system

schedules tasks to resources that can optimize the

performance in terms of the total execution time while

satisfying eventual budget requirements for application

execution.

Finally, it is worth noting that autonomic execution of

workflows for dengue fever prediction is just one of the

possible scenarios for application of autonomic management

of Clouds. As Cloud platforms become more widespread as

the infrastructure of choice for several domains such as e-

health, e-Science, e-government, and e-commerce, the need

for autonomic management of Clouds will spread across all

these domains. Nevertheless, the general principles and

architectural aspects of such autonomic platforms will follow

architectural elements presented in this paper, regardless the

application domain.

V. PERFORMANCE EVALUATION

We present an evaluation of the autonomic iterative

optimization feature of the workflow engine. The

experimental testbed, depicted in Figure 4, consists of a

hybrid Cloud composed of a local infrastructure (located in

an A*STAR Institute, Singapore) containing four nodes, each

of which had 24 cores (hyper-threaded) 2.93 GHz processor

and 96 GB of memory and running 48 Linux CentOS 5.8

virtual machines with 2 or 4 cores and 4 GB of memory. This

local infrastructure is complemented by 25 Amazon EC2

large compute instances (2 cores with 2 ECU and 7.5 GB of

memory) deployed in the region of Asia Pacific (South East).

The application utilized for the experiment is the dengue

fever prediction application, which utilizes historical dengue

cases and climate data from 2001 to 2010.

Figure 6. Effect of the iteration optimization of workflow execution in the dengue fever prediction model.

The predictive model utilized is based on a sliding

window, where parameter variables are adjusted periodically

through the comparison of real dengue cases with the

prediction results. Such interactive analytics model can be

mapped to the workflow in Figure 5.

The iterative scheduling algorithm searches the

suboptimal solutions aggressively by using information of

previous iterations of the workflow execution. The iteration

loop occurs between tasks labeled as H and A as shown in

Figure 5. As a consequence of the iterative loop, tasks labeled

from B to G are re-executed as each new iteration starts, with

information related to a different time window being used as

tasks input.

As each of the iterations completes, the workflow system

computes the expected execution time of tasks and the cost of

keeping the current amount of resources for execution. If

changes in the number of available resources can lead to

substantial improvement in either makespan or cost, the

number of provisioned resources is scaled up or down. This

enables the system to fine-tune and adapt the provisioning

and scheduling according to the characteristics of the

workflow tasks and the execution environments.

Figure 6 presents the results of variation of number of

resources provisioned by the workflow engine in different

iterations of the execution of the prediction model. After

collecting information about the actual execution time of the

tasks at the first iteration, the number of provisioned

resources was corrected so that the tasks were consolidated in

fewer Cloud resources. Further corrections where applied

between iterations 2 and 3. Overall, the autonomic iterative

optimization feature of the workflow engine enabled a

reduction of execution time of 48% and reduction of cost of

public Cloud utilization in 70% compared to a greedy

solution for provisioning and scheduling of workflow

applications in Clouds.

VI. CONCLUSIONS AND FUTURE WORK

The growing adoption of Cloud computing as the

preferred solution for hosting business and academic systems

evidences the need for better solutions for management of

such platforms. Considering that Cloud platforms are

typically composed of thousands of physical hosts and virtual

machines, connected by many network elements,

management of such infrastructures is also becoming a

challenging task. Furthermore, as Clouds get bigger visibility

as a strategic asset for organizations, they will also

increasingly become the target of cyber-attacks.

This paper presented our first steps towards an

autonomic Cloud platform able to handle several of the above

problems. Such a platform will be able to dynamically

provision Cloud resources to applications in such a way that

Quality of Service expectations of users are met with an

amount of resources that optimizes the energy consumption

required to run the application. Moreover, the platform will

also be able to differentiate regular requests from DDoS

attacks against the infrastructure, avoiding the wastage of

energy and budget caused by provision of resources to

illegitimate requests.

Our early experiments demonstrate the potential of the

platform to optimize workflow applications, which are

complex applications where dependencies between tasks

exist and have to be respected by the platform.

As future work, we will implement more dynamic

provisioning algorithms that are QoS and security-aware and

energy efficient, and will demonstrate their effectiveness with

real applications from domains like disaster management,

environment data analysis and healthcare, as we identify

these as target areas that can benefit the most from an

autonomic Cloud system.

ACKNOWLEDGEMENTS

This work is partially supported by the Australian

Research Council Future Fellowship grant. We would like to

thank our colleagues Jia Yu, Suraj Pandey, Sifei Lu, Long

Wang, Henry Palit, and Qin Zheng for their contribution

towards Workflow Engine. We thank Deepak Poola and

Nikolay Grozev for their comments on improving the paper.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.

Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and

M. Zaharia, A view of Cloud Computing, Communications

of the ACM, 53(4):50-58, ACM, Apr. 2010.

[2] R. Buyya, C. S. Yeo, and S. Venugopal, Market-Oriented

Cloud Computing: Vision, Hype, and Reality for Delivering

IT Services as Computing Utilities, Proceedings of the 10th

IEEE International Conference on High Performance

Computing and Communications (HPCC 2008), Sept. 25-

27, 2008, Dalian, China.

[3] J. Varia, Best practices in architecting cloud applications in

the AWS Cloud. In: R. Buyya, J. Broberg, A. Goscinski

(eds.), Cloud Computing: Principles and Paradigms, Wiley

Press, 2011.

[4] HP. Utility Computing. http://www.hp.com/go/utility/.

[5] IBM Smart Cloud. http://www.ibm.com/cloud-computing/.

[6] J. O. Kephart and D. M. Chess, The Vision of Autonomic

Computing, Computer, 36(1):41-50, IEEE, Jan. 2003.

[7] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P.

Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,

W. Weimer, C. Wells, and B. Zhao. OceanStore: an

architecture for global-scale persistent storage, ACM

SIGPLAN Notices, 35(11):190-201, ACM, Nov. 2000.

[8] J. Menon, D. A. Pease, R. Rees, L. Duyanovich, and B.

Hillsberg. IBM Storage Tank—A heterogeneous scalable

SAN file system, IBM Systems Journal, 42(2):250-267,

IBM, Apr. 2003.

[9] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M.

Kalantar, S. Krishnakumar, D. P. Pazel, J. Pershing, and B.

Rochwerger. Oceano-SLA based management of a

computing utility. Proceedings of the 2001 IEEE/IFIP

International Symposium on Integrated Network

Management (INM 2001), Seattle, WA, USA, 2001.

[10] G. M. Lohman and S. S. Lightstone, SMART: making DB2

(more) autonomic. Proceedings of the 28th International

Conference on Very Large Data Bases (VLDB 2002), Hong

Kong, China, 2002.

[11] H. Liu, V. Bhat, M. Parashar and S. Klasky, An Autonomic

Service Architecture for Self-Managing Grid Applications,

Proceedings of the 6th IEEE/ACM International Workshop

on Grid Computing, Seattle, Washington, USA, 2005.

[12] M. Parashar and J.C. Browne, Conceptual and

Implementation Models for the Grid, Proceedings of the

IEEE, 93(3):653-668, IEEE, Mar. 2005.

[13] J. Kaufman, T. Lehman, G. Deen, J. Thomas, OptimalGrid -

autonomic computing on the Grid, IBM, 2003.

[14] A. J. Chakravarti, G. Baumgartner, M. Lauria, The Organic

Grid: Self-Organizing Computation on a Peer-to-Peer

Network, Proceedings of the 1st International Conference

on Autonomic Computing (ICAC 2004), New York, USA,

2004.

[15] H. Kim, Y. el-Khamra, I. Rodero, S. Jha, and M. Parashar,

Autonomic Management of Application Workflows on

Hybrid Computing Infrastructure, Scientific Programming

19(2):75-89, IOS, June 2011.

[16] J. Chen, C. Wang, B. Zhou, L. Sun, Y. Lee, A. Zomaya,

Tradeoffs Between Profit and Customer Satisfaction for

Service Provisioning in the Cloud, Proceedings of the 20th

ACM International Symposium on High Performance

Distributed Computing (HPDC 2011), San Jose, USA,

2011.

[17] A. Goscinski and M. Brock, Toward dynamic and attribute

based publication, discovery and selection for Cloud

computing, Future Generation Computer Systems, 26(7):

947-970, Elsevier, Jul. 2010.

[18] B. Bethwaite, D. Abramson, F. Bohnert, S. Garic, C.

Enticott, T. Peachey, Mixing the Grid and Clouds: High-

throughput Science using the Nimrod Tool Family, In:

Cloud Computing: Principles, Systems and Applications,

Antonopoulos and Gillam (eds), Springer, 2010.

[19] U. Tupakula and V. Varadharajan, TVDSEC: Trusted

Virtual domain Security, Proceedings of the 4th

International Conference on Utility and Cloud Computing

(UCC 2011), Melbourne, Australia, 2011.

[20] M. H. Sqalli, F. Al-Haidari, and K. Salah. EDoS-Shield – A

two-step mitigation technique against EDoS attacks in

Cloud Computing, Proceedings of the 4th International

Conference on Utility and Cloud Computing (UCC 2011),

Melbourne, Australia, 2011.

[21] K. Talukder, M. Kirley and R. Buyya, A Pareto Following

Variation Operator for Fast-Converging Multiobjective

Evolutionary Algorithms, Proceedings of the 10th Annual

Genetic and Evolutionary Computation Conference

(GECCO 2008), Atlanta, USA, 2008.

[22] R. E. Morales Vargas, P. Ya-umphan, N. Phumala-Morales,

N. Komalamisra, and J. P. Dujardin, Climate associated size

and shape changes in Aedes aegypti (Diptera: Culicidae)

populations from Thailand, Infection, Genetics and

Evolution, 10(4):580–585, Elsevier, May 2010.

[23] J. Yu and R. Buyya, A Novel Architecture for Realizing

Grid Workflow using Tuple Spaces, Proceedings of the 5th

IEEE/ACM International Workshop on Grid Computing

(GRID 2004), Pittsburgh, USA, 2004.

[24] S. Pandey, D. Karunamoorthy and R. Buyya, “Workflow

Engine for Clouds”, Cloud Computing: Principles and

Paradigms, Wiley, 2011.

[25] R. Ranjan, R. Buyya, and M. Parashar, Autonomic Cloud

Computing: Technologies, Services, and Applications,

Concurrency and Computation: Practice and Experience,

24(9):935-937, Wiley Press, New York, USA, June 2012.

