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Summary

The high volume of monitoring information generated by large-scale cloud infrastructures poses

a challenge to the capacity of cloud providers in detecting anomalies in the infrastructure. Tra-

ditional anomaly detection methods are resource-intensive and computationally complex for

training and/or detection, what is undesirable in very dynamic and large-scale environment such

as clouds. Isolation-based methods have the advantage of low complexity for training and detec-

tion and are optimized for detecting failures. In this work, we explore the feasibility of Isolation

Forest, an isolation-based anomaly detection method, to detect anomalies in large-scale cloud

data centers. We propose a method to code time-series information as extra attributes that enable

temporal anomaly detection and establish its feasibility to adapt to seasonality and trends in the

time-series and to be applied online and in real-time.
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1 INTRODUCTION

The rapid adoption of cloud computing1 by governments and busi-

nesses is astonishing. This is because cloud computing offers the possi-

bility for its customers to elastically meet their application's demands,

paying only for resources that are used. Such business model contrasts

with conventional operation of in-house infrastructures that need to

be provisioned for the peak capacity, generating huge capital costs (eg,

acquisition of computing servers and network equipment) and opera-

tional costs (eg, electricity costs incurred by the facility and its cooling

system and salary of system administrators).

However, there are a few concerns that inhibit the adoption of clouds

by governments and companies. One of those concerns is performance

and availability of applications once they are migrated to the cloud.

Even short periods of outage or substantial performance degradation

in a critical time (eg, high demand for online shopping during Christmas

period) can lead to substantial losses to companies hosting applications

on clouds.

One possible way that cloud providers can reassure their customers

is through strict service-level agreements (SLAs) that determine the

quality of service (QoS) and compensations to be paid to customers if

QoS is not met. Besides metrics such as availability, the SLA can also

include guarantees that virtual machine (VM) entitlements (the amount

of resources from physical hosts allocated to VMs) are respected.

To meet the availability requirements and minimize performance

degradation in virtual machines, cloud providers apply monitoring in

the infrastructure. However, monitoring and management of cloud

infrastructures are complex tasks. Large-scale cloud data centers oper-

ated by cloud providers usually contain thousands or tens of thousands

of servers that can host hundreds of thousands of virtual machines.

Failures on an infrastructure of such scale are very common; thus,

mechanisms must be in place to identify them as quickly as possible to

prevent, or at least minimize, downtime of virtual machines (and thus

applications) hosted in the infrastructure. Moreover, virtual machines

can host a multitude of applications, and thus separating monitoring

measurements that indicate failures from noisy application behavior is

challenging.

Anomaly detection techniques2 can be applied to monitor behavior

such as variation of patterns in user demand, applications, and infras-

tructure in cloud data centers.3,4 Nevertheless, traditional anomaly

detection methods have 2 main limitations to be applied in the dis-

cussed context5: (1) they are computationally intensive for training

and/or detection, and (2) they are optimized to detect normal behavior,

and the identification of the anomaly is a “by product” of the classifica-

tion process.

To circumvent the aforementioned limitations of anomaly detection

methods, Liu et al5,6 proposed the first isolation-based anomaly detec-

tion method, called Isolation Forest or iForest. This method explores the
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fact that anomalies tend to be in smaller number and isolated (in terms

of attribute values) from normal observations.5 The method explores

such characteristics of anomalies to isolate them close to the root of

binary trees that represent the available data. This method has smaller

asymptotic complexity than other popular anomaly detection methods

such as k-Nearest Neighbors (k-NN) and Random Forests.

A key challenge related to utilization of iForest for anomaly detec-

tion in cloud infrastructures relates to the nature of the infrastructure

monitoring data such as CPU, memory, disk, and network usage are

time-series data. This is because resource usage tends to vary along

the day and usually present seasonal pattern. For example, it can be

expected that a disk will have high volume of access in a given day

and time (say, Saturdays at midnight, when a backup process is sched-

uled to execute), and not in other periods. Thus, the date and time

where an event occurs is as important as the monitored value itself

for anomaly detection in clouds. Existing literature regarding iForest,

including applications of the method, did not explore its feasibility for

anomaly detection in time-series data.

Given the benefits of iForest, such as small asymptotic complexity

and focus on identifying anomalies rather than normal instances, this

method is an excellent candidate to be applied for anomaly detection

in cloud data centers—a domain where timely detection of anomalies

is critical to enable QoS specified in SLAs between cloud providers and cus-

tomers. To this end, in this paper, we investigate the feasibility of iForest

for anomaly detection in large-scale cloud data centers.

The contributions of this paper are as follows: (1) we propose a

method to code time-series information as extra attributes that enable

temporal anomaly detection in cloud data centers; (2) we investigate

and establish its feasibility to adapt to seasonality and trends in the

time-series; and (3) we study the feasibility of the approach to be

applied online and in real-time.

The rest of this paper is organized as follows. Section 2 discusses

related work in the areas of data analytics supporting cloud operations

and anomaly detection in clouds. Section 3 discusses the motivation

for this work and the iForest anomaly detection method, the technique

utilized in this paper. Section 4 introduces the dataset used for eval-

uation. Sections 5 and 6 discuss the effects of seasonality and trend,

respectively, in the anomaly detection process. Section 7 evaluates the

viability of the method for online anomaly prediction, and Section 8

presents the conclusion and future research directions.

2 RELATED WORK

In this section, we discuss related works in 3 key areas: (1) anomaly

detection algorithms; (2) data analytics supporting cloud operations;

and (3) anomaly detection in clouds.

2.1 Anomaly detection algorithms

Anomaly detection is a well-developed area with different approaches

to different contexts. Several surveys were written that explore differ-

ent techniques from a conceptual perspective2,7 or for specific appli-

cations (eg, Estevez-Tapiador et al8 for networks, Xie et al9 for wireless

networks, and García-Teodoro et al10 for intrusion detection). These

works classify anomaly detection algorithms in a number of classes on

the basis of the method used for detection. Another relevant approach

for anomaly detection is ORCA,11 which is an improvement over k-NN

for anomaly detection that applies randomization and pruning in the

search space to reduce the complexity of the detection to nearly linear

time. However, as pointed out by Liu et al,5 these traditional methods

target identification of normal instances and can be computationally

intensive for training or detection, what are undesirable characteristics

in our application scenario.

The method used for anomaly detection in this work, iForest,5,12

is detailed in Section 3.2 and works in the principle of isolation of

anomalous instances. It has been explored in different contexts includ-

ing anomalies in taxi trajectories,13 wireless networks,14 and clus-

tered anomalies.12 Tan et al15 propose a method, called HS-Trees, that

applies principles of isolation-based anomaly detection in streaming

data. Although data generation in our domain scenario can be viewed as

stream, it is also a time-series and thus the moment in time when a data

point is generated is important in the decision-making process. Dif-

ferent studies investigating workload prediction based on time-series

in the context of web servers16,17 demonstrated that Web workloads

present seasonal behavior. Seasonality, if not taken in consideration

by anomaly detectors, leads to classification errors. So our proposed

approach for time-series coding can complement the work by Tan et al15

by enabling expected seasonal behavior not to be interpreted as a

change in the distribution of data.

None of the previous works explored how isolation-based anomaly

detection can be successfully applied for anomaly detection in

time-series data. We investigate the suitability of the method for

anomaly detection in time-series data, in particular in the context of

anomalies in cloud data center infrastructures.

2.2 Data analytics supporting cloud operations

Data analytics has been used as a means to support cloud operations.

Islam et al18 investigated the application of artificial neural networks

(ANNs) and linear regression to optimize the resource provisioning

process from the perspective of a cloud user launching new instances

to support growing application demand. Rather than provisioning, our

approach targets anomalies in the pattern of resource utilization by vir-

tual machines that are already running, and thus, it is complementary

to the method by Islam et al.18

Dean et al19 presented a method for prediction of performance

anomalies in cloud infrastructures on the basis of self-organizing maps.

The approach is decentralized, and models are built for each appli-

cation, utilizing hypervisor-level information (resources requested by

VMs to the hypervisor) and VM-level information. Our approach tar-

gets detection rather than prediction, and therefore could be applied

concurrently with the approach by Dean et al,19 so it could rectify

anomalies caused by errors in the prediction.

Davis et al20 presented an adaptive approach for prediction of CPU

usage in cloud data centers on the basis of linear regression and dis-

crete Fourier transform. The models are built for every machine in the

data center, and the approach focuses only on the CPU utilization of

servers. Rather than prediction, our approach focuses on detection of
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anomalies and includes not only CPU but also memory, network, and

disk. As in the previous case, our approach could be applied jointly to

overcome prediction errors.

Yu et al21 applied clustering and ANN on information about work-

load of existing applications to predict workload characteristics of

new tasks. When an unseen task arrives, it is initially mapped to one

of the existing clusters, and then task requirements are predicted

using the ANN that was trained for the chosen cluster. Zhang et al22

applied deep-belief network to predict the number and characteris-

tics of resource requests that will arrive in a cloud data center. These

works focus on the problem of predicting future resource requirements

of tasks and characteristics of tasks, respectively, whereas our work

focuses in detecting anomaly in resource utilization of virtual machines,

without requiring information about the application workload.

Neves et al23 applied analytics to optimize runtime performance

of the data center network. In particular, it applies predictive tech-

niques to estimate the required communication demand of MapRe-

duce applications and uses this information to reconfigure flows via

software-defined networking techniques. Whereas the approach by

Neves et al23 targets data center networking, out approach targets

data centers' computing resources.

These works demonstrate the potential that data analytics has

to improve management of cloud infrastructures. Next, we discuss

research related to anomaly detection in clouds.

2.3 Anomaly detection in clouds

On the particular topic of anomaly detection in clouds, research has

been performed with different objectives. Ibidunmoye et al24 presents

a comprehensive review of the topic of performance anomaly detec-

tion and bottleneck identification in clouds. We focus here either on

works that are closely related to our approach in terms of target envi-

ronment and objectives or on works that are not included in the survey

by Ibidunmoye et al.24

Bhaduri et al4 proposed a method for anomaly detection in cloud

infrastructures on the basis of k-NN. It detects anomalies in both infras-

tructure and resource management level (anomalies in the job sub-

mission process, job runtime, and machine boot time) and can detect

nodes in a cluster behaving differently from other nodes. Because the

approach requires all-to-all communication among hosts, it is suitable

for small-scale infrastructures. Furthermore, k-NN is a method that

incurs high asymptotic complexity (namely, O(n2)) and thus loses per-

formance drastically with the increase in number of data points (hosts,

in the context of the work). Our approach, on the other hand, is suit-

able for data centers with thousands of hosts, as it relies on anomaly

detection methods with low complexity and optimized for finding the

anomalies.

Tan et al3 proposed PREPARE, an approach for anomaly detection at

application level using Markov chains. It monitors virtual machine met-

rics; at the same time, it checks if service-level objectives of the appli-

cations (eg, response time, throughput) are being met. Thus, PREPARE

can identify virtual machines whose behavior, in terms of resource uti-

lization and application performance, are different from other VMs in

the cluster. Dean et al25 proposed an approach for detecting anomalies

in the performance of applications running on IaaS clouds. It inspects

the traces of system calls issued by applications to detect anomalies in

the execution time of system calls or on the pattern of calls generated

by the application. It can detect machines that are slower than others

while processing system calls and can detect abnormal system calls that

may indicate malicious behavior. These approaches are more suitable

for small-scale infrastructures and are designed to detect problems in

the applications rather than in the physical infrastructure, which is the

target of our approach.

Vallis et al26 applied anomaly detection in large-scale time-series

of service level metrics. It uses time-series decomposition and robust

statistics to identify anomalous behavior in the service operation. The

approach is mostly applied a posteriori, ie, to identify anomalous behav-

ior in utilization of virtual machine resources after it occurred. Our

approach, on contrary, aims at real-time anomaly detection in the

infrastructure.

Shen et al27 proposed a method to detect performance anomalies

in software systems such as operating systems and application servers.

The approach is probabilistic and is based on a reference execution

of the software, which is seen as achieving expected performance. It

utilizes application and operating system performance and configura-

tion information and can detect software systems that are anomalous.

It requires introspection in the VM, whereas our approach, suitable

for IaaS, targets resource-level information that can be obtained via

hypervisor without requiring access to the VM.

Jehangiri et al28 applied anomaly detection in clouds using the

Holt-Winters forecasting method as a MapReduce application. The

anomaly detection is performed when a violation in application metrics

is detected, and thus, it can detect anomalous VMs. Frattini et al29 use

the concept of invariant mining to detect anomalies in the execution of

SaaS application. An "invariant" is defined as a system property that is

guaranteed to be observed during its execution, and thus, they viola-

tion is a strong indicator of anomalies.29 The method is used to detect

violation in application performance metrics such as execution time

and throughput and can indicate when the application is experiencing

problems. Our method is applied in the context of IaaS cloud infras-

tructures, where providers do not have access to information about the

application layer to drive their decisions.

Solaimani et al30 proposed an anomaly detection system that han-

dles VM monitoring data as streams and performs clustering to classify

the typical behavior of VMs. Machines whose behavior do not fit into

the clusters are labeled as anomalous. This approach is not suitable

in the context of IaaS (our target service model), where the multi-

tude of clients, operating systems, Web and application servers, and

applications cause behavior among VMs to vary drastically, thwarting

clustering algorithms to be used effectively.

Doelitzscher et al31 proposed an approach for detection of abnormal

utilization of IaaS cloud resources that may indicate malicious usage of

the cloud. The approach is based on ANN and is applied on VM manage-

ment operations (creation, destruction, and migration) with focus on

security. Our approach targets resource utilization metrics with focus

on performance.

Xu et al32 addressed the problem of detecting anomalies during

the execution of sporadic operations, such as deployment, integra-

tion, and reconfiguration, in cloud applications. The approach detects
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anomalies in the form of errors in the execution of the sporadic opera-

tion. It also provides root cause analysis of anomalies observed during

such events. Our approach, on the other hand, targets nonsporadic

events, specifically anomalies in resource utilization observed during

application runtime.

Huang et al33 proposed an approach that combines local outlier

factors (a semisupervised anomaly detection algorithm) and symbolic

aggregate approximation (a methodology to represent time-series) to

identify anomalies in the process of live migration of virtual machines.

It analyzes resource-level metrics and can identify machines that expe-

rienced issues during live migration. Rather than live migration of VMs,

our approach focuses on unsupervised anomaly detection in the per-

formance of running virtual machines.

Farshchi et al34 proposed a regression-based approach for anomaly

detection during DevOps application operations. It uses information

from log files and infrastructure monitoring tools and can detect prob-

lems during operations such as backup, application upgrade, migra-

tion, reconfiguration, auto-scaling, and deployment. Our approach, on

the other hand, focusses on the “steady” stage of the life of a vir-

tual machine, and thus, both approaches could be used side-by-side:

As the moment that DevOps operations are triggered are known, the

anomaly detection method could be switched when these operations

occur, reverting back to our approach at the end of the operation.

Zhang et al35 proposed an approach for anomaly detection in cloud

applications based in clustering. It detects and identifies application

threads that have abnormal behavior by analyzing system-level data.

As stated above, our method targets IaaS clouds where providers do

not have access to the applications running on a VM and can detect

anomalies without requiring such low-level access to VMs.

3 MOTIVATION AND BACKGROUND

This section introduces the main challenges motivating this work and

presents a brief introduction to the Isolation Forest algorithm applied

in this paper.

3.1 Challenges in anomaly detection in clouds

IaaS cloud data centers are composed of tens of thousands of physical

servers that support the operation of tens or hundreds of thousands of

virtual machines. The VMs host a multitude of combinations of oper-

ating system, application containers, Web servers, and user-specific

applications. Regardless of what is hosted in the VMs, providers must

deliver the expected performance to the application. Usually, perfor-

mance expectations are coded in the form of SLAs that determine

the QoS to be provided, penalties for the provider case they are not

achieved, and rewards when they are. Because IaaS providers do not

have control over the usage of VMs, QoS is usually defined in terms of

availability and resource allocation to VMs (for example, memory, CPU,

I/O, and network).

To ensure SLA compliance, the cloud infrastructure is constantly

monitored by providers. Monitoring software, such as Nagios* and CA

*http://www.nagios.org

Application Performance Management,† can provide instant informa-

tion about physical resource utilization of VMs and hosts. However,

given the scale of cloud data centers, large volume of monitoring infor-

mation is generated in a given time, and there is the need to this data to

be timely processed to reduce performance issues caused by ongoing

infrastructure problems when they occur.

The challenge faced by operators of such infrastructures is how to

quickly identify unusual behavior in hosts and/or VMs, via analysis of

monitoring data that can indicate that some incident is taking place,

either at application or at infrastructure level. This is required to enable

quick reaction to anomalies that may lead to SLA violations. While

static, manually set thresholds in resource utilization can provide a sim-

ple solution for the problem; it cannot account for heterogeneity in

applications. This can lead to an excess of false-positives, because some

applications may have usual patterns of utilization that are higher from

manually set values, or false-negatives, in the opposite case. Manually

fine-tuning the thresholds for each VM or application is not a scalable

solution for the problem, besides being a costly operation, as it requires

substantial human intervention.

The above facts demonstrate that machine learning–based solutions

are the preferred method for this problem. In particular, we argue that

an effective solution for automatic anomaly detection in the context of

large-scale cloud data centers should meet the following requirements:

• Real time operation. The solution must be able to detect anomalies

as they happen, to allow data center operators to take actions in

timely manner to minimize the risk of SLA violations.

• Unsupervised learning. Because of the huge heterogeneity of soft-

ware executing in a VM and because cloud providers do not have

access to customer VMs, it is impractical for providers to label the

anomalies in the data. Vallis et al26 also point out the challenge

of velocity in the monitoring generation as another obstacle for

labeling anomalies in monitoring data.

• Adaptability. Workloads change over time. The application hosted

on a VM can be changed by the VM owner, or it can be updated,

changing its behavior. Utilization of the hosted application can

increase due to growth of popularity, leading to a positive trend.

The solution should adapt to these changes.

• Robustness to seasonal behavior. Cloud applications usually

present a pattern of utilization that contains expected peaks and

troughs. The solution should account for this fact when signaling

anomalies.

• Low computational cost for training. Thousands of different appli-

cations can be present in a cloud data center in a given time.

Moreover, clouds are dynamic environments, where new applica-

tions can be quickly added and removed and workloads can change

quickly. Thus, it is important that the computational complexity for

training models is low, so the amount and time of resources ded-

icated to this task can be reduced, freeing resources to the core

business of service providers (ie, hosting customer's applications).

Among the works in the area of anomaly detection in clouds dis-

cussed in Section 3.1, only Bhaduri et al4 and Vallis et al26 target

† http://www.ca.com/us/opscenter/ca-application-performance-management.aspx

http://www.nagios.org
http://www.ca.com/us/opscenter/ca-application-performance-management.aspx
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anomaly detection at infrastructure level. However, none of these

works target real-time anomaly detection (the first of the above

requirements). Furthermore, the work by Bhaduri et al4 is based on

k-NN, and results presented in Section 6 for a method based in k-NN

show that it is not very robust to seasonal behavior. Thus, the method

does not meet the fourth requirement above. The work by Vallis et al,26

however, meets all the other requirements.

Among different solutions for anomaly detection available in the

literature, isolation-based methods5 have characteristics that make

them promising to meet all the above requirements. Next, we discuss

iForest, the method for anomaly detection that is used in this paper in

the context of large-scale cloud data center monitoring.

3.2 Isolation Forest

Isolation Forest,‡ or iForest5,6 is an unsupervised anomaly detection

method on the basis of the isolation principle. It explores the fact that

anomalies tend to be data points that are distant from normal points

of the dataset. Given this property, these points are more likely to be

isolated (separated) from normal points by random partitions in the

attributes space. It means that less random partitions in the attributes

space are necessary to isolate an anomaly than a normal point.

An Isolation Forest is composed of a set of Isolation Trees. An Isola-

tion Tree is a binary tree where leaves are data points and nonterminal

nodes contain an attribute a and the attribute value v. Points in the

2 subtrees are split according to v, so all remaining points are sent to

a subtree depending whether the points' value for a is less than, or

grater or equal than v. The tree is recursively built by random selec-

tion of attributes and values until all the points are in a leave of the tree

(see Figure 1). Each tree in the forest is built with a subsample of the

whole dataset. Because of the isolation principle, points that represent

anomalies are more likely to be isolated closer to the root of the trees.

In the evaluation stage, data points traverse each tree of the forest

until they reach a terminal node (ie, they are isolated) or until a maxi-

mum traversal length l is reached. The choice of l affects the granularity

of the anomaly detection. The path length h(x) obtained on each tree

while the data point traverses the tree is recorded. It is expected that

anomalous points will, in average, traverse a shorter path on the for-

est than normal points. Thus, the output of the process—the Anomaly

Scores—is a function of the normalized value of the average h(x) among

all trees, with 0 < s ⩽ 1. The higher the s, the more likely the point is an

anomaly. Tuning parameters of the algorithm are the subsample size𝜓 ,

the number of trees t, and maximum path length l.

The effectiveness of iForest for anomaly detection in large-scale

cloud data centers is investigated in this paper because the method has

properties that meet the requirements listed in the previous section.

It is an unsupervised anomaly detection method and is promising for

real time utilization because of its lower asymptotic complexity, both in

training and evaluation stages—respectively, O(t𝜓2) and O(nt𝜓), where

n is the testing data size5—compared to competitive approaches such

as k-NN and Random Forest.6

Previous cases of use of iForest did not investigate its suitability for

time-series data such as monitoring data from cloud infrastructures.

‡ Not to be confused with Random Forest, a classical and widely used machine learning classifier
proposed by Breiman.36

FIGURE 1 One Isolation Tree of an iForest. Nonterminal nodes
represent attributes a and split values v for data points to the 2
subtrees. Terminal nodes are data points. Anomalies are more likely to
be isolated closer to the root of the tree than normal points. In this
example, only the data point x1 has a value for attribute a1 greater
than v1

In particular, seasonality and trends are challenging aspects that, if not

accounted for, can impair the anomaly detection process.26 Thus, in the

rest of this paper, we describe how we adapted our dataset to enable

iForest to operate on it without losses in the temporal aspect of the

data and evaluate the method for different scenarios observed in cloud

infrastructures.

4 DATASET AND DERIVED ATTRIBUTES

In this section, we discuss the dataset we used and the derived

attributes we added in the analysis to increase the performance and to

encode the temporal aspect of the attributes in the anomaly detection

process.

4.1 Dataset

The dataset we used contains monitoring data from a subset of IaaS

data centers from an Information Technology company that operates

worldwide. The analyzed cloud infrastructure comprises 30 data cen-

ters spread across 18 countries in 3 continents. Each data center

contains a mix of servers using virtualization technology and servers

where applications run in the bare hardware (nonvirtualized). Virtual-

ized servers use VMware ESXi,§ which provides the monitored metrics.

Data were collected by the data centers' monitoring software, which

was aggregated in 30 minute intervals. Sources of information are the

§ http://www.vmware.com/products/esxi-and-esx

http://www.vmware.com/products/esxi-and-esx
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data centers' resources (virtual machines, virtualized hosts, and nonvir-

tualized hosts), and the collected metrics are as follows:

• Disk transfer rate;

• Network transfer rate;

• CPU utilization; and

• Memory utilization.

The dataset contains dynamic information about a randomly sam-

pled subset of the data centers resources (VMs). Each row of the table

contains a single measurement obtained from a single resource on

a given time for the 4 metrics, along with a time stamp. Thus, each

row of the table has the following format: <name, timestamp,

disk rate, network rate, CPU utilization, memory

utilization>.

As the collection happens in 30-minute intervals, a single day of

observations contains 48 of such rows per host. The subset of hosts

monitored in a single day varies. Thus, measurement for a single host

can be missing for some days. However, there are no missing rows for

a host that is monitored in a particular day, although rows can miss

information for one or more metrics (but never for all metrics).

Information about utilization of each resource by each host has been

organized in the form of time-series. The period of data analysis com-

prises 2 months. To guarantee confidentiality of the company and its

customers, we arbitrarily refer to the first day of data collection as

March 1, 2014 and the last day as May 1, 2014. Moreover, because

the data analysis is performed individually in each VM, the y-axis of

the plots in Figure 2 (described later) contains the normalized value of

the metric with the highest observed value for the parameter on such

particular VM in the time-series.

One particular limitation of the discussed method and the dataset

is that it cannot detect annual season patterns, such as peak in access

close to Christmas or other holidays. To be able to correctly iden-

tify annual patterns as anomalies, many years of data would need to

be available for training purposes. Therefore, correct classification of

annual patterns is outside the scope of this work.

4.2 Derived attributes

The dataset contains 4 variable attributes—CPU, memory, network,

and disk utilization. Initial attempts of applying iForest with such small

number of attributes did not lead to good anomaly detection power on

the approach. Furthermore, the utilization of the measured attributes

as collected lack the temporal aspect that, as discussed before, is impor-

tant for monitoring of cloud data centers.

Our data analysis revealed that, besides the raw value observed in

a given time, the difference between 2 successive measurements, for

each attribute, increased the performed of the approach and doubled

the number of available attributes. The differences of values observed

in bigger intervals (up to 1 wk) were also explored, with little or no

improvements in the anomaly detection performance.

The use of 1-lag difference in attributes was not enough to capture

the time-series behavior to the level required. This has been solved with

the use of another set of derived attributes (one per original attribute)

that encodes the expected seasonal behavior of the metric (based on

previous observed values). For this purpose, we assume a weekly peri-

odicity in the half-hour series and obtain the median of the subcycle

series26 (each subcycle contains all the observed values at a given week

day and time), which is defined as follows.

Consider a time-series data organized as a matrix A ∈ R
m×n, which

contains m season cycles, each of size n. In our dataset, season cycles

are weekly and observations are obtained hourly. Thus, if A contains

4 weeks of collected data, m = 4 (4 wk—thus 4 cycles—of data), n = 168

(24 samples are obtained per day during 7 d in a cycle), and each column

j represents 1 hour of one week day (eg, Tuesday, 4PM).

Each column j of A is called subcycle series.26 Consider a vector V

whose element vj contains the median of column j of A. In this case, vj is

said to store the median of the corresponding subcycle series:

vj = median(a1,j, a2,j … , am,j),1 ⩽ j ⩽ n. (1)

The choice of medians rather than averages is because the median is

more robust to anomalies and results in more robust anomaly detec-

tion, as demonstrated by Vallis et al.26

The extra set of attributes contains the difference between the

observed value in a given time and the median of the subcycle series for

the corresponding day of the week and time (ie, the difference between

the observed value xj at a day and time j and vj).

Table 1 presents a summary of all the explored attributes. In the

rest of the paper, we explore how the iForest method and the derived

attributes perform for anomaly detection in time-series data from

cloud data centers.

5 DETECTION OF SEASONALITY

Studies demonstrated that Web workloads present seasonal

behavior.16,17 This means that peaks and troughs in requests can be

expected at certain times. It is important that such periodic variations

in the workload are correctly identified because their occurrence

must not be regarded as anomalous. In fact, the opposite should be

expected: Expected peaks or troughs in demands that failed to occur

should be regarded as anomalies. As discussed in Section 2, identifica-

tion and detection of such seasonal behavior is a recurring issue in data

analytics applied in the area of cloud computing.

In this section, we evaluate the capacity of the iForest algorithm

to detect and correctly classify seasonal patterns in the workload.

Figure 2 shows the workload we use for evaluation, which relates to the

monitoring of one particular server, extracted from the studied dataset.

The time-series depicted in Figure 2A-D correspond, respectively, to

disk access, network access, CPU usage, and memory usage (all the

values are normalized with basis on the largest value for the attribute

observed on the respective series). There is a visible seasonal pattern

where a peak in resource utilization, more prominently seeing in the

disk and network access, occurs weekly (because these values are nor-

malized, such peaks have values of 1.0, or are very close to 1.0). Such

points are labeled as 1 to 6 in the figure. Two other points, marked as A

and B, occur earlier in the workload. However, these points are shifted

in time from the rest of the points, and thus, they are not treated as

belonging to the same seasonal behavior observed in the rest of the

labeled points. The key point of this figure is to show that a seasonal
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FIGURE 2 Workload of one server obtained from the dataset, which is used to evaluate detection of seasonal behavior by iForest. Labeled points
correspond to the peak of the workload and have values close to 1.0. Points labeled A and B are slightly shifted in time from the points labeled 1 to
6, and thus, they are not part of the weekly cycle observed in the rest of the labeled points. A, Disk; B, Network; C, CPU; D, Memory
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TABLE 1 Attributes of the data used in this paper

Attribute Name Meaning

Disk Disk transfer rate (MB/s)

Net Network transfer rate (Mb/s)

CPU Utilization of CPU (%)

Mem Utilization of memory (%)

Disk_diff Difference between the current and previous observation of the Disk attribute

Net_diff Difference between the current and previous observation of the Net attribute

CPU_diff Difference between the current and previous observation of the CPU attribute

Mem_diff Difference between the current and previous observation of the Mem attribute

Disk_SS_dev Difference between the Disk observation and the median of the corresponding subcycle series

Net_SS_dev Difference between the Net observation and the median of the corresponding subcycle series

CPU_SS_dev Difference between the CPU observation and the median of the corresponding subcycle series

Mem_SS_dev Difference between the Mem observation and the median of the corresponding subcycle series

The first 4 attributes are directly obtained from the dataset, and the remaining attributes are derived from them and assist
in the capture of time-series behavior.

behavior is present in this workload (starting from the third week), and

thus, points 1 to 6 should not be classified as anomalous.

To evaluate the capacity of adapting to seasonal behavior in work-

loads, the algorithm has been executed against the original work-

load and the values of s of the points of interest were collected.

Then, the experiment was repeated, this time with a modified ver-

sion of the workload where the peak marked as 1 was replaced by

the average of the surrounding values for each attribute, thus remov-

ing the seasonal effect for that point. We continued the application

of such procedure, each time removing another peak: first, point 2,

then point 3, and so on, until point 5 was removed. The whole pro-

cess has been repeated for different maximum traversal lengths l

(l = {1,3,6,9}). Every time a peak was removed, the remaining ones

were less of an expected behavior than before, until the point where

peaks occurrences were rare and thus should be characterized as

anomalous.

Figure 3 shows how the resulting anomaly scores computed for

each labeled point changed as peaks were removed from the work-

load. As the number of peaks is reduced, the score of a given point

tends to increase. The degree of increment is higher for l = 1 and

decreases as l increases. Thus, the choice of a proper value for the

anomaly score s (which is workload dependent and is also affected

by l) enables the classification of seasonal peaks as nonanomalies.

Such a cutoff value is 0.60, 0.68, 0.80, and 0.83, respectively, in

Figures 3A-D. Results show that iForest enables detection of seasonal

behavior by correctly attributing lower anomalies scores for points

that are significantly different from the expected if similar behavior

is observed in similar times in the workload. Points with similar val-

ues but occurring in a different pattern of time (points A and B) are

also correctly awarded high anomaly scores by iForest, what makes the

algorithm suitable for use for anomaly detection in time-series with

seasonality.

Determination of the cutoff value for anomaly detection is applica-

tion specific and influenced by the frequency of occurrence of peaks

and troughs in the workload. To exemplify this, Table 2 shows the num-

ber of detected anomalies for different cutoff values for the workloads

discussed in this section with l = 6. Besides the expected effect that

lower cutoffs causes too many points being considered anomalous,

the table shows that, the more regular the patterns observed in a work-

load (ie, the more the seasonal behavior was replaced by average of

surrounding points), the higher is the anomaly score and thus the cutoff

value for the most salient anomalies.

The implication of the above is that the choice of cutoff value needs

to take into consideration the cost of false-positives (unnecessary

deployment of technical staff in the data center), the cost of false neg-

atives (SLA violations and loss of customer confidence), and the degree

of variability in the workload: low cutoff values and/or higher values

for l generate more reported anomalies and thus result in the former

(more technician calls), whereas high cutoff values and/or low values for

l result in the latter (more potential SLA violations).

In situations where the workload contains seasonal trends with

chaotic daily behavior, it could be expected high hourly variation, what

reflects in larger values for the *_diff attributes. If this is the regular

behavior, periods of stable utilization might be considered the abnor-

mal behavior. This would reflect in close to zero for *_diff attributes,

contributing to higher anomaly scores for this particular case. Never-

theless, it still likely that this type of workload would require lower

cutoff values to be properly detected.

6 DETECTION OF TRENDS

Another important aspect of anomaly detection in the context of cloud

computing regards the effect of trends in the detection. The cumula-

tive effect of trends in the time-series makes the values towards the

end of the series to be significantly different from those at the begin-

ning. This in turn may lead detectors unaware of the effect to yield more

false-positives towards the end of the series.26

To investigate the effect of trends in our approach for anomaly detec-

tion based on iForest, we modified the workload depicted in Figure 2

and added a trend element to all the attributes. To this end, we injected

a cumulative increase in load of 5% per week for the duration of the

workload. If the trend affects the outcome of the anomaly score, then

it is expected that scores towards the end of the series will be differ-

ent from those at the beginning of the series, for the workload with

added trend.
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FIGURE 3 Evaluation of the effect of seasonal behavior detection in iForest. The anomaly score of the points labeled in Figure 2 were calculated
with different number of peaks removed from the workload. The algorithm correctly assigns lower anomalies scores for points with different
behavior if similar behavior is observed in similar times in the workload. Each plot corresponds to one value of maximum traversal length l. A, l = 1;
B, l = 3; C, l = 6; D, l = 9

To investigate how sensitive is the method to trends, we conducted a

paired t test on values of s generated by the original workload and the

one with the added trend. The experiment was repeated for different

maximum traversal lengths l (l = {1,3,6,9}).
The paired t test for the experiment with each l showed a slight

decrease in the mean s when the trend was injected in the workload.

The mean reduction was, respectively, 0.002, 0.004, 0.005, and 0.006

for l = {1,3,6,9} (P values < 2.2e−16 for all cases). This corresponds

to a worst case variation of less than 2% in the mean value of s, which

does not affect the classification performance from a practical perspec-

tive. Thus, we can conclude the method is robust against trends in the

time-series.

To determine if the robustness against trends is caused by the

derived attributes or by iForest itself, we repeated the above

experiment using iForest without the derived attributes and using

another unsupervised anomaly detection method, namely, ORCA,11
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TABLE 2 Evaluation of different cutoff values for the anomaly score sin the number of
anomalies generated

Cutoff Value

Workload 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Seasonal, no peaks removed 36 22 16 11 8 3 2 0 0

Seasonal, 1 peak removed 34 21 14 10 7 3 2 0 0

Seasonal, 2 peaks removed 36 21 11 9 6 6 3 0 0

Seasonal, 3 peaks removed 36 18 13 7 6 5 5 1 0

Seasonal, 4 peaks removed 34 13 8 5 5 4 4 1 0

Seasonal, 5 peaks removed 47 14 8 6 4 3 3 2 0

FIGURE 4 Variation of anomaly score along the time in a time-series workload with injected trend. iForest is executed with and without derived
attributes. Results are also compared with normalized scores produced by ORCA, an unsupervised, k-NN–based anomaly detection algorithm,
with and without derived attributes

a k-NN–based anomaly detection algorithm. ORCA has been cho-

sen for the evaluation because it is an unsupervised learning method

(a requirement in the context of this work) with near linear asymptotic

complexity for anomaly detection. Output provided by ORCA (with

and without derived attributes) has been normalized in relation to the

highest anomaly value generated by the method. Tests with iForest

used 100 trees and l = 9 (which captures the largest reduction in the

mean in the previous experiment).

Figure 4 shows the values of s along the time for iForest with and

without derived attributes and ORCA. The figure shows that when

the derived attributes are not present, scores oscillate significantly for

longer traversal lengths, rendering the result ineffective. Furthermore,

when derived attributes are not used, more anomalies are generated

towards the end of the series, an effect that had been already docu-

mented by Vallis et al.26 ORCA also provided more clear anomalous

points when the derived attribute were used. Thus, the extra attributes

contribute to the classification capability of both iForest and ORCA in

the discussed context.

7 ONLINE ANOMALY DETECTION

The analysis we performed so far is suitable for offline analysis of the

cloud infrastructure: By observing a large dataset composed of histor-

ical data, anomalies observed in the infrastructure can be detected.

As discussed earlier, one of the advantages of iForest over competi-

tors is the good performance of the method to quickly detect anoma-

lies, which would make the method suitable for real-time anomaly

detection.

To understand the capacity of iForest of being applied in real-time,

we conducted simulation experiments with the available dataset. The

experiment consists in using only information obtained before a given

time t to detect anomalies at time t. In the experiment, we use the

first week of traces to perform an initial training of the model for each

server. Starting from week 2, anomaly detection is performed every

30 minutes. This time interval is chosen to align with the dataset used

in this paper—longer or shorter time intervals could be used as well

without any loss in generality.

At the end of each day (starting from week 2), the model for each

VM is updated at midnight, and the updated model is used for detection

for the next day. The model is updated with the use of a 1-week sliding

window (except for median calculation, where all the previous values

are used). Shorter update intervals would be of little value, as a large

amount of computation would be performed with only a small amount

of extra data to be incorporated to the model. Longer update intervals

could be used as well (for example, the update could run in a batch

over the weekend, when the demand for computing resources tend to

be lower).

The currently available technologies enable implementation of such

approach: For example, streaming processing frameworks (such as

Apache Storm¶) enable the collection of real-time data and the anomaly

detection to be performed instantly. The daily retraining can be per-

formed by batch processing frameworks such as Hadoop.‖

¶ https://storm.apache.org/
‖https://hadoop.apache.org/

https://storm.apache.org/
https://hadoop.apache.org/
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TABLE 3 Coefficient of correlation between anomaly scores obtained
via online and offline analyses for different values of maximum
traversal lengths l

l

Workload 1 3 6 9

Seasonal, no peaks removed 0.85 0.91 0.91 0.91

Seasonal, 1 peak removed 0.88 0.94 0.94 0.93

Seasonal, 2 peaks removed 0.91 0.95 0.92 0.92

Seasonal, 3 peaks removed 0.94 0.97 0.95 0.94

Seasonal, 4 peaks removed 0.94 0.95 0.93 0.92

Seasonal, 5 peaks removed 0.92 0.94 0.93 0.92

Trend 0.87 0.91 0.92 0.92

Seasonal workloads correspond to those used in Section 5, while trend
refers to the workload used in Section 6.

We investigate the relationship between anomaly scores obtained

in real-time against scores obtained in offline analysis. To this end, we

use the same data used in Section 5 and depicted in Figure 2, includ-

ing all the variations with removed seasonal behavior, so our analysis

contains different levels of seasonality. We also apply the same

approach with the workload discussed in Section 6 to add trend to the

time-series. Therefore, in total, 7 correlation analyses, with different

degrees of seasonality and trends, are investigated. The whole exper-

iment was repeated for different values of l (l = {1,3,6,9}, as in the

previous sections).

The coefficient of correlation of the values of s obtained with the 2

approaches (online and offline) for the different workloads are depicted

in Table 3. Results show a strong correlation between values of s

obtained via online and offline techniques. In fact, although there are

statistically significant difference between s obtained with online and

offline anomaly detection (confirmed by paired t tests), this differ-

ence, for all cases, was found to be smaller than 1% of the average s,

what does not affect the outcome of the anomaly detection. In terms

of runtime, calculation of anomaly scores of 2722 data points with

l = 9 (using R) took 28 milliseconds in a machine with Intel Core i7

2600 (Quad core, 3.40 GHz, 8 MB of cache) with 8 GB of RAM, and

the corresponding iForest data structure used only 22.8 MB of RAM.

The training time was in 579 milliseconds (average of 100 repetitions

of the training process). All these results enable us to conclude that

iForest is a suitable algorithm for real-time anomaly detection in cloud

environments.

8 CONCLUSIONS AND FUTURE WORK

We investigated the applicability of the iForest anomaly detec-

tion algorithm for detection of abnormal events in resource uti-

lization of large-scale cloud data centers. Initially, we demonstrated

how time-series information was extracted into extra attributes that

enabled temporal anomaly detection. Next, we investigated the capac-

ity of the method in detecting seasons and trends in the dataset was

explored, along with the method's feasibility for online and real-time

anomaly detection.

As future work, we will investigate the applicability of the method

for customer segmentation in terms of QoS in the reaction to detected

anomalies. We will also investigate the problem of anomaly detection

in the services hosted by the cloud platform using application-level

QoS metrics.
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