
The Journal of Systems and Software 164 (2020) 110557 

Contents lists available at ScienceDirect 

The Journal of Systems and Software 

journal homepage: www.elsevier.com/locate/jss 

ARC: Anomaly-aware Robust Cloud-integrated IoT service composition 

based on uncertainty in advertised quality of service values 

Mohammadreza Razian 

a , b , Mohammad Fathian 

b , ∗, Rajkumar Buyya 

a 

a Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and Information Systems, The University of Melbourne, VIC 3010, 

Australia 
b School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran 

a r t i c l e i n f o 

Article history: 

Received 1 June 2019 

Revised 16 January 2020 

Accepted 20 February 2020 

Available online 21 February 2020 

Keywords: 

Service composition 

Uncertainty 

Robust optimization 

Anomaly detection 

IoT 

Cloud Computing 

a b s t r a c t 

From the IoT perspective, each intelligent device can be considered as a potential source of service. Since 

several services perform the same function, albeit with different quality of service (QoS) parameters, ser- 

vice composition becomes a crucial problem to find an optimal set of services to automate a typical 

business process. The majority of prior research has investigated the service composition problem with 

the assumption that advertised QoS values are deterministic and do not change over time. However, fac- 

tors like sensors failure and network topology changes cause uncertainty in the advertised QoS values. 

To address this challenge, we propose a novel Anomaly-aware Robust service Composition (ARC) to deal 

with the problem of uncertainty of QoS values in a dynamic environment of Cloud and IoT. The proposed 

approach uses Bertsimas and Sim mathematical robust optimization method, which is independent of the 

statistical distribution of QoS values, to compose services. Moreover, our approach exploits a machine 

learning-based anomaly detection technique to improve the stability of the solution with a fine-grained 

identification of abnormal QoS records. The results demonstrate that our approach achieves 14.55% of the 

average improvement in finding optimal solutions compared to the previous works, such as information 

theory-based and clustering-based methods. 

© 2020 Elsevier Inc. All rights reserved. 
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. Introduction 

Internet of things (IoT) and Cloud computing are changing the

ay industries and enterprises do their businesses with lower cap-

tal expenditure (CAPEX) ( Xu, 2012; Goudarzi et al., 2017; Buyya

t al., 2018 ). Currently, Kubernetes Kubernetes , Docker Swarm

warm , and Apache Mesos mesos have become modern choices

or container and data center orchestration to deliver applications

nd services at a high velocity to industries ( Zhang et al., 2019 ).

lthough the Cloud services provide virtually unlimited resources,

hey are limited in terms of scope (i.e., located in data centers).

n the other hand, IoT devices are limited in computational re-

ources, but they are becoming increasingly ubiquitous and perva-

ive. Therefore, the integration of Cloud and IoT ( Botta et al., 2016 ),

amely Cloud-integrated IoT, has provided an unprecedented op-

ortunity for developers to develop more value-added software

ervices. 
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Every intelligent device in IoT can be considered as a poten-

ial service provider offering a micro-service using network-based

PIs ( Urbieta et al., 2017 ). Microservices architecture (MSA) is a

ariant of the traditional service-oriented architecture which de-

elops an application by composing a suite of independent ser-

ices ( Balalaie et al., 2016 ) with a fine-grained functionality. The

erm fine-grained means each service performs a specific and pre-

efined task like reporting temperature by a sensor or stock inven-

ory by an RFID tag. Furthermore, there are some quality of service

QoS) parameters describing the performance of a service in terms

f availability, security, reliability, cost, and response time. Since

everal services can perform the same function, albeit with differ-

nt QoS, service composition becomes a crucial problem to find an

ptimal set of Cloud and IoT services to automate workflow in a

ypical business process. 

A large number of works have been devoted to addressing the

ervice composition problem (SCP) with the assumption that the

dvertised QoS values are deterministic (i.e., they assume that the

dvertised QoS values of service providers do not change over

he time) ( Jula et al., 2015; Zhou and Yao, 2017; Jatoth et al.,

018 ). However, in reality, the factors like workstation load, multi-

enancy, sensors failure, network topology changes, network con-
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Fig. 1. The severity of fluctuation in response time values (seconds) for a typical service. The historical data have been collected by Zheng et al. (2014, 2010) . 
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gestion, and economic policies cause uncertainty in the QoS values

( White et al., 2017b; Bronsted et al., 2010; Raychoudhury et al.,

2013 ). Traditionally, a service broker who is responsible for ser-

vice composition offers a composite service to the users based on

the advertised QoS values and user’s constraints. However, due to

the uncertainty of QoS values, the aggregated QoS values of this

composite service may violate the user’s constraint. In this situa-

tion, the service broker will be charged according to the service

level agreement ( Schuller et al., 2012 ). Fig. 1 a shows the real re-

sponse time values of an invoked service observed by 333 users

( Zheng et al., 2014; 2010 ). The figure indicates that different users

can receive different response times for a unique service. Moreover,

Fig. 1 b shows that even for a unique user, the values of response

time may fluctuate in different time slots (here, the values have

been collected for 64 time-slots). 

Recently, some studies have concentrated on the problem of

service composition for uncertain QoS values. However, there are

three major limitations associated with the current service compo-

sition approaches: 

1. They assume that there exist sufficient and reliable histori-

cal records of QoS values for all services; however, in the dy-

namic environment of IoT, service nodes come from differ-

ent providers and join or leave the network frequently. Thus,

the broker has not sufficient and reliable historical QoS values

about a new service which is recently joined the network. As

a result, cold start and data sparsity are two crucial problems

that degrade the performance of these approaches. 

2. They suppose that the QoS values follow a constant or well-

known statistical distribution in long-term; practically, QoS val-

ues may not rely on a constant probability distribution function

precisely ( Zheng et al., 2016 ); 

3. They do not consider the dynamicity of a Cloud-integrated IoT

environment where intermittent network connection and spo-

radic access are common causes of anomalies in monitored QoS

values ( Moghaddam et al., 2018 ). 

Clearly, these approaches will fail in the dynamic environment

of Cloud-integrated IoT. In this paper, we propose an A nomaly-

aware R obust C loud-integrated IoT service composition (ARC) con-

sidering uncertainty in advertised QoS values. ARC provides a high-

level composition algorithm to eliminate much of these limitations

and makes the composition process less error-prone. The ARC algo-

rithm is based on an abstract service model representing candidate

services, user’s tasks in terms of workflow, user’s preferences in
erms of constraints, QoS values under uncertainty, a robust model

or providing a composite service, and an adaption mechanism us-

ng anomaly detection algorithm for managing environment dy-

amicity. The key contributions of this paper are summarized as

ollows: 

• First, we analyze and demonstrate the uncertainty of QoS val-

ues by analysis of a real dataset. 
• Second, we propose a mathematical robust optimization model

to deal with the uncertainty of QoS values under users’ con-

straints to minimize the cost. 
• Third, an innovative fine-grained approach is proposed to iden-

tify the amount of uncertainty around services using an unsu-

pervised Isolation-Trees based approach. 
• Fourth, a flexible parameter namely protection degree is intro-

duced which allows the decision-makers to control the trade-

off between robustness and optimality 
• Fifth, we conduct a comprehensive set of experiments on the

real dataset and compare our approach with existing informa-

tion theory-based and clustering-based methods. 

The rest of the paper is structured as follows:

ection 2 presents a motivation example and reviews the re-

ated work along with a conclusion on the pros and cons of

revious studies. In Section 3 , we define the service composition

roblem using notations and mathematical optimization model-

ng. The proposed ARC algorithm is presented in Section 4 . In

ection 5 , the efficiency and effectiveness of ARC are evaluated

n a comparison of known approaches in the literature. Finally, in

ection 6 , we conclude the paper and propose future work. 

. Background and related work 

.1. Motivation example 

In this section, a motivation example is used to clarify the prob-

em of Cloud-integrated IoT QoS-aware service composition under

ncertainty. The basic background of this example is derived from

he health-care domain ( Raychoudhury et al., 2013; Avila et al.,

017 ). IoT plays an important role in the future of health-care and

resents new opportunities to detect, prevent, and treat disease.

et us assume Company A that develops health-care software ap-

lications based on MSA needs a collection of services (i.e., a com-

osite service). Company A prepares a document including a work-

ow (i.e., required tasks and their execution sequence) and QoS
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Fig. 2. Sequence diagram of service composition problem. 
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Table 1 

The corresponding candidate services of Com- 

pany A ’ workflow 

Task Cand. service Resp. time Cost 

t 1 s 11 2.12 988 

s 21 0.33 1167 

t 2 s 12 0.37 1163 

s 22 0.33 1167 

s 32 0.32 1168 

s 42 0.91 1109 

s 52 1.22 1078 

t 3 s 13 1.03 1097 

s 23 0.55 1145 

s 33 1.31 1069 

t 4 s 14 1.04 1096 

s 24 1.21 1079 

s 34 3.43 857 

s 44 1.77 1023 

t 5 s 15 1.30 1070 

s 25 1.70 1030 

t 6 s 16 1.67 1033 

s 26 1.11 1089 

s 36 0.29 1171 

s 46 0.31 1169 

s 56 1.37 1063 

a  

u  

v  

n  

e  

f  

t  

t  

f

 

g  

m  

s  

o  

e  

t  
onstraints. Consider Company A decides to provide the following

et of services to the users: 

• Sensing A group of metrics, including heart rate, blood pres-

sure, and glucose rate is acquired by using IoT services with

various QoS attributes, which are provided by multiple vendors.
• Navigation Company A needs a navigation service to provide

the best route to a public clinic or hospital to users in the

emergency conditions by using intelligent IoT sensors for find-

ing a location and estimating the real-time traffic information

( Lin et al., 2019 ). 
• Data Warehouse It is crucial for Company A to store the users’

electronic health records in a reliable, highly-available, and se-

cure ( Guan et al., 2019 ) data warehouse. A lot of Cloud-based

storage systems such as Oracle Cloud platform offer storage ser-

vices with different QoS attributes. 
• Translation In order to localize the user interface of the appli-

cation, Company A requires a translator service to change the

application language according to users’ preference. 
• Analytics Company A also applies an analytics service to find

users’ behavior and activities to propose a custom health pro-

gram. For instance, Amazon AWS AWS provides a wide variety

of services like AWS IoT Analytics that collects, pre-processes,

enriches, stores, and analyzes IoT device data. 
• Representation The graphical representation of health records

is another requirement of Company A . Data visualization and

charting services help users to find out their health status, es-

pecially when the volume of monitored data grows increasingly.

A wide variety of service providers advertise their services and

orresponding QoS values to the service broker. The broker de-

ides which services are appropriate for performing the tasks in

he workflow according to Company A document and advertised

oS values of service providers. Fig. 2 shows the whole process

f service composition using UML sequence diagram. 

Table 1 shows the candidate services of Company A ’s tasks and

oS values for the response time and cost parameters. To adhere to

he motivation scenario, we assigned response time values to the

ervices mentioned above. These values come from reports ( Zheng

t al., 2014; 2010 ). These reports have measured the observed re-

ponse time of online services like online dictionary for slang words
nd phrases and Navigator Online from geographically-distributed

sers. The reports collected response time values for a given ser-

ice observed by all users. For the aforementioned motivation sce-

ario, we calculated the average values of the reported times for

ach service. Suppose that there are two candidate services for per-

orming the task t 1 along with five candidate services for task t 2 ,

hree candidate services for task t 3 , four candidate services for task

 4 , two candidate services for task t 5 , and five candidate services

or task t 6 . 

If Company A does not consider any restrictions on the ag-

regated value of response time, the broker suggests the mini-

um cost plan that is 6055 for the composite service 〈 s 11 , s 52 ,

 33 , s 34 , s 25 , s 16 〉 . Although, Company A considers some constraints

n the aggregated QoS values, such as the response time param-

ter. Hence, the service broker finds the optimal plan according

o these constraints. Fig. 3 represents the effect of response time’s
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Fig. 3. Impact of user’s constraint on the composite service cost. 
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constraint on the cost of the composite service. These results show

that when Company A increases the constraint on the aggregated

response time value (i.e., a service set with lower execution and

communication time), the cost of composite service also increases.

If the advertised QoS values fluctuate, the broker will be

charged with the extra penalty fees because of SLA violation. For

example, consider Company A waits 4 seconds to receive the re-

sult of a composite service. If the aggregated QoS violates from

this constraint, the penalty will be applied for the broker. It is no-

table that, in the above example, when we set the maximum ac-

ceptable value for aggregated response time to 4 seconds, the se-

lected services become 〈 s 21 , s 32 , s 23 , s 14 , s 15 , s 36 〉 , which are dif-

ferent from the previous ones. Through an extensive literature re-

view, we found that a lot of previous studies assume that QoS val-

ues rely on normal distribution ( Wang et al., 2010; Schuller et al.,

2012; Ramacher and Mönch, 2012; Ye et al., 2014; Wang et al.,

2016; Mostafa and Zhang, 2015 ). However, measurement of real

services like YouTube ( Zheng et al., 2016 ), shows that for exam-

ple, the response time cannot be fitted to well-known statistical

distributions. More information about the QoS values statistics and

distributions can be found in Zheng et al. (2016) . Because of sen-

sor failure, hardware power loss, intermittent network connections,

and sporadic access, the QoS fluctuations are intensified when IoT

nodes supply services. Therefore, to decrease the penalty for vio-

lating the users’ constraints, the broker needs to select services ro-

bustly and adapts the selection procedure concerning changes in

the environment. 

2.2. Related work 

Service composition problem (SCP) is a well-researched area

as many works have been devoted to solving it ( Asghari et al.,

2018 ). In order to model the SCP, formal methods such as Petri net

( Tan et al., 2009 ) and Process algebra ( Tu et al., 2010 ) have been

employed. However, these methods are difficult to implement in

real-world scenarios ( Oh et al., 2006 ). Jaeger et al. (2004) discuss

different QoS parameters and basic structures for workflow con-

struction. Ardagna and Pernici (2007) formalize the service compo-
ition problem as a mixed-integer programming (MIP) problem for

he various workflow patterns such as sequence and loop as well

s their corresponding QoS aggregation function. Also, agent-based

rchitectures were proposed to facilitate the broker-customer ne-

otiations and agreement ( Chhetri et al., 2006; Gutierrez-Garcia

nd Sim, 2010 ). 

Many heuristic ( Liu et al., 2009; Li et al., 2010; Luo et al., 2011 )

nd meta-heuristic ( Yang et al., 2010; Jatoth et al., 2018 ) methods

ave been applied to SCP to find the (near-)optimal set of services

 Jatoth et al., 2017 ). Yu et al. (2007) developed an algorithm for

ervices composition with the QoS constraints for the whole work-

ow. They mapped the SCP to the multi-dimension multi-choice

-1 knapsack problem. A 

∗ ( Rodriguez-Mier et al., 2011 ) and Hill

limbing ( Klein et al., 2011 ) are some famous algorithms that were

sed to decrease the processing time of SCP solving. Neverthe-

ess, these approaches do not guarantee to find the global opti-

um solution and may get trapped in a local optimum. In order

o overcome this problem, many meta-heuristic algorithms such as

enetic algorithm (GA) ( Amiri and Serajzadeh, 2010; Yilmaz and

aragoz, 2014 ), multi-objective genetic algorithm ( Sharifara et al.,

014; Wada et al., 2012 ), particle swarm optimization (PSO) ( Tao

t al., 2008; Wang et al., 2013 ), ant colony optimization (ACO)

 Zhang et al., 2010; Yu et al., 2015 ), artificial bee colony (ABC)

 Zhou and Yao, 2017; Lartigau et al., 2015 ), fruit fly optimization

 Zhang et al., 2015; Seghir and Khababa, 2016 ), and Cuckoo search

 Chifu et al., 2011 ) have been considered to solve the SCP. However,

arameter tuning for intensification and diversification is the main

oncern in meta-heuristic approaches. Although meta-heuristic al-

orithms can find solutions faster by decreasing the search space,

ypically, they find a near-optimal solution rather than an exact op-

imum solution. 

All the aforementioned approaches assume that the QoS val-

es are deterministic. As discussed in Section 2.1 , in reality, the

oS values are not deterministic, and there are some perturba-

ions in the values due to inherent dynamicity in Cloud-integrated

oT environments. In order to encounter the QoS perturbation,

eng et al. (2004) presented a local (for each task) and global

total workflow) optimization algorithm. They observed that the
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xecution duration of a service is not deterministic. Furthermore,

hey considered a random variable as a Normal distribution to

odel the execution duration. Hwang et al. (20 04, 20 07) proposed

 probabilistic model using a discrete random variable with a prob-

bility mass function (PMF). In order to decrease the sample size

f the random variable, they chose a value for the same domains.

hey used both dynamic programming and greedy method to find

he best fitting domain value. Albeit, this grouping (i.e., the selec-

ion of a single value on behalf of all values in the same domain)

eads to aggregation error. Wang et al. (2007) discuss on a fuzzy

ule-based system to select a service from a service file repository.

hey propose a service selection method using objective informa-

ion (i.e., QoS parameters) and subjective information (i.e., users’

bservation and satisfaction) to match user’s preferences to exist-

ng services. Moreover, they use a genetic algorithm for adjust-

ng fuzzy rules to eliminate the errors in users’ satisfaction scores.

hese scores have been acquired using the questionnaire in the

ikert five-point rating. 

Rosario et al. (2008) proposed a soft contract concept based on

robability distribution to decrease the impact of uncertain QoS

alues on the SLA violation. In order to generate different con-

racts, they deployed TOrQuE (Tool for Orchestration simulation

nd Quality of service Evaluation) based on Monte Carlo simula-

ion. The aim of authors in Wiesemann et al. (2008) , is to min-

mize the risk that originated from stochastic programming. The

verage value-at-risk (AVaR) measure is applied to calculate the

orst-case risk function for the time and cost parameters. The

orst-case decision results are more conservative choices than the

xpected value approach. Yu and Bouguettaya (2010) concentrate

n Cloud provider selection and explore how users can flexibil-

ty select the provider. They propose a p-dominant service skyline

o find the most preferred service provider. In order to deal with

he uncertainty of QoS values, a p-R-tree , an indexing data struc-

ure, is used, and a dual-pruning process is employed to prune the

ncertain providers that are dominated by other providers. Viola-

ion of the user’s constraints will result in an additional penalty

ost for the service broker who presents the composite service. To

void this penalty, Schuller et al. (2012) adopted a greedy algo-

ithm to minimize this penalty with the assumption that the prob-

bilistic features of QoS parameters are known (for example, they

onsider response time values as a Normal distribution). Also, they

eplace the greedy algorithm with a genetic adaption algorithm in

chuller et al. (2014) . In order to provide a better search space, au-

hors in Hwang et al. (2015) identify the local optimum services

y decomposing global constraints (i.e., workflow level constraints)

o some local constraints (i.e., task level). Then, they gradually im-

rove the initial services assignment (in a time-intensive manner)

o obtain a better composition. It is worth mentioning that, decom-

osing global constraints to local constraints using historical QoS

alues causes the improper outcome. In Mostafa and Zhang (2015) ,

he authors have designed a multi-objective model for SCP using

 multi-objective partially observable Markov Decision. Reinforce-

ent learning is adopted to improve the solution periodically. They

valuate their proposed method using the synthetically generated

ataset (based on Normal statistical distribution) for QoS values.

ecreasing the total number of service invocations has investigated

n Chattopadhyay and Banerjee (2016) . They proposed an A 

∗ algo-

ithm to find the minimum service invocation required for per-

orming a workflow. Albeit, in many scenarios, the user needs to

xecute all of the tasks in the workflow and does not permit to re-

uce the tasks included in a corresponding workflow. They use the

chebysheff’s inequity for the QoS values, which follow an unknown

istribution to estimate the largest possible population variance

worst-case scenario). 

In Zheng et al. (2016) , Zheng et al. applied a multivariate time-

eries to predict the future for long-term service composition by
sing the historical data; although, the cold-start problem threats

heir procedure. Chen et al. (2016b) propose a robust technique

o defend against the uncertainty by considering a fixed interval

alue. In essence, determining a fixed interval value in a highly

ynamic circumstance like Cloud-integrated IoT leads to inaccurate

utcomes with a high penalty for the service broker. Based on the

loud model ( Wang et al., 2011 ), Wang et al. (2017) measure the

ncertainty of candidate services according to Entropy and Vari-

nce values of monitored services. They remove uncertain service

n the pre-composition phase and find the composite service using

ixed inter programming. Recently, Khanouche et al. (2019) pro-

ose a clustering-based services composition algorithm for the IoT

nvironment. They categorize candidate services according to the

oS level to three clusters, i.e., High-QoS, Middle-QoS, and Low-

oS. 

Additionally, in real-time literature, the concept of probabilis-

ic Worst-Case Execution Time pWCET has been introduced. There

re two approaches in pWCET to estimate the worst-case value:

tatic analysis and measurement. The former tries to find out pro-

essor behaviors like caching and using this, calculate the worst-

ase path of a program through syntax tree representation of the

rogram. However, this approach may fail when analyzing data-

ntensive programs and/or employing today’s advanced CPU fea-

ures (with acceleration features like cache, pipelines, branch pre-

iction buffers and out of order execution) ( Bernat et al., 2003 ).

he latter, i.e., the measurement approach, tries to observe the real

ystem. However, they may fail to capture the worst-case using

re-defined test cases. Besides, there exist some hybrid approaches

hich adopt both static analysis and measurement ( Bernat et al.,

003 ) to obtain the probability distributions of the individual exe-

ution time of the program’s blocks. However, running under many

est scenarios to find the probability is a time-consuming process

hat does not fit in a dynamic IoT environment where the on-the-

y services join/leave network. Furthermore, pWCET has been in-

roduced to ascertain whether software programs execute within

he time bounds assigned to them in terms of execution time and

esponse time ( Cazorla et al., 2019 ). However, as mentioned in

hite et al. (2017a) , according to the quality model ISO/IEC 25010

 Standardization, 2016 ) in service composition, there is broad cov-

rage of QoS attributes like availability, reliability, and usability.

herefore, it is needed an approach to be able to support time-

ased and other QoS attributes. Also, WCET of the program en-

ages with the execution time of a program in an embedded sys-

em and does not consider the communication network aspects

f a Cloud-integrated IoT environment where intermittent network

onnection and sporadic access are common causes anomaly in

aptured QoS values. Therefore, WCET approaches would not be

roficient due to a lack of ability for calculation of infrastructure

elay and communication between IoT node and Cloud data cen-

ers. 

However, there are several limitations in these approaches in-

luding 1) They assume that there exists a full list of useful his-

orical records related to QoS values for all services are available;

owever, in the dynamic environment of IoT, service nodes join

r leave the network. Furthermore, cold start and data sparsity

re two crucial problems that degrade the performance, notably

hen the broker has not sufficient and reliable historical QoS val-

es about a new service which is recently joined to network; 2)

hey assume that the historical data are fitted to a well-known or

onstant statistical distribution in the long-term. Practically, QoS

alues may not rely on a constant probability distribution func-

ion precisely ( Zheng et al., 2016 ); 3) They do not consider the

ynamicity of a Cloud-integrated IoT environment where intermit-

ent network connection and sporadic access are common causes

f anomaly in monitored QoS values ( Moghaddam et al., 2018 ).
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Clearly, these approaches will fail in a dynamic environment of

Cloud-integrated IoT. 

Table 2 summarizes the Uncertainty-aware approaches using a

following qualitative criteria: some studies generate QoS values

randomly or use a specific statistical distribution. It is worth to

note that Applying real dataset is necessary to deal with uncer-

tainty. Protection degree which allows the decision-makers to con-

trol the trade-off between robustness and optimality. In order to

support a Cloud-integrated IoT scenario, it is important to focus on

environment adaption to reach an effective and efficient composite

service. The factors like sensor failures or corruption in network

infrastructure among smart devices result in the abnormal data in

the historical monitored QoS. Dealing with anomalies ( Anomaly de-

tection ) becomes an important aspect of service composition prob-

lem under uncertainty, particularly in the Cloud-integrated IoT en-

vironments. To the best of our knowledge, this work is a pioneer in

proposing service composition Architecture for Cloud-integrated IoT .

This architecture helps developers to deploy their software using a

composition of isolated, independent and fine-grained IoT services

in an uncertain environment. 

3. Problem definition 

In this section, we formalize the QoS-aware service composi-

tion problem. Table 3 summaries the notations used in this paper

with a brief description. Suppose T is a workflow including a set

of tasks t i which in T = { t 1 , t 2 , ..., t N } , N is the number of tasks in-

cluded in T , and 1 ≤ i ≤ N . Consider the set M = { m 1 , m 2 , ..., m N }
so that m i ∈ M represents the number of candidate services for

performing the task t i and m i ≥ 1. Let S i be a set of candidate ser-

vices for performing t i where S i = { s 1 
i 
, s 2 

i 
, ..., s 

m i 
i 

} , 1 ≤ i ≤ N. There-

fore, s 
j 
i 

∈ S i is j th candidate service which is potentially able to be

invoked for performing the i th task. The set Q = { q 1 , q 2 , ..., q L } de-

fines QoS parameters so that L is the number of QoS parameters

and q i ∈ Q presents a QoS parameter (e.g. q 1 = RT ime ). The request

of user for a composite service usually is accompanied with a set

of constraints on QoS parameters. The set B = { b 1 , b 2 , ..., b L } defines

constraints b i , 1 ≤ i ≤ L for QoS attributes q i . Table 4 describes the

QoS parameters used in this paper and their definitions. We em-

phasize that our work is general and does not depend on a spe-

cific QoS parameter. Using these preferences, service broker finds

a composite service with the minimum Cost (the price of using a

service which is typically stated in terms of per hour/user/byte ). 

A workflow is constructed by a set of tasks with the assump-

tion that each task has its candidate services. The different struc-

tures that can be considered for a workflow are sequence (succes-

sive tasks), loop, condition, and parallel (concurrent tasks). For the

sake of simplicity, we consider the sequential structure; other com-

position structures such as loop, parallel, and condition can be con-

verted to the sequential structure through the methods mentioned

in Dou et al. (2015) ; Zheng et al. (2013) . In Eq. (1) , the QoS-aware

service composition problem is modeled in the form of objective

function Z : 

Z = MIN 

∑ 

1 ≤i ≤N 

∑ 

j∈ M 

x i j ∗ Cost(s j 
i 
) (1)

Subjected to 
∑ 

1 ≤i ≤N 

∑ 

j∈ M 

RT ime (s j 
i 
) ∗ x i j ≤ b RT ime (2)

∏ 

1 ≤i ≤N 

∑ 

j∈ M 

A v ail(s j 
i 
) ∗ x i j ≥ b A v ail (3)

1 

N 

∗
∑ 

1 ≤i ≤N 

∑ 

j∈ M 

Reput(s j 
i 
) ∗ x i j ≥ b Reupt (4)



M. Razian, M. Fathian and R. Buyya / The Journal of Systems and Software 164 (2020) 110557 7 

Table 3 

Summary of notations 

Notation Description 

t i i th task in a given workflow 

T Set of tasks t i included in a given workflow 

N Total number of tasks in a workflow 

m i Number of corresponding candidate services for each t i 
M Set of the number of candidate services ( m i ) 

S i Set of candidate services for i th task 

s j 
i 

The j th candidate service for i th task 

Q Set of QoS parameters 

L Number of QoS parameters 

B Set of user’s constraints for QoS attributes 

b RTime Maximum allowed response time value for the composite service 

b Avail Minimum allowed availability value for the composite service 

b Reput Minimum allowed reputation value for the composite service 

Cost(s j 
i 
) Retrieving the price of s j 

i 

RT ime (s j 
i 
) Retrieving the response time of s j 

i 

A v ail(s j 
i 
) Retrieving the availability probability of s j 

i 

Reput(s j 
i 
) Retrieving the reputation score of s j 

i 

x ij A binary variable indicting selection of a candidate service s j 
i 

� Protection degree 

χ A particular data point in Isolation Forest tree 

h ( χ ) The number of edges in a tree for a particular data point χ

E ( h ( χ )) The average of h ( χ ) from a set of isolation trees 

nc ( n ) Normalization constant for a dataset of size n 

a ij The advertised QoS value (or nominal value) for s j 
i 

ˆ a i j The amount of perturbation for s j 
i 

J i Set of coefficients which are subject to uncertain parameters 

Z Objective function (for minimizing cost) 

c The coefficient of the objective function (i.e. service’s cost) 

ζ A dual variable used in Bertsimas and Sim formulation 

p ij A dual variables used in Bertsimas and Sim formulation 

y j Used to represent absolute variable | x ∗ j | as −y j ≤ x j ≤ y j 
� The time period between adaption phases 

ϒ Contamination rate (the proportion of outliers in data) 

μ j 
i 

Mean value of the historical records of s j 
i 

after removing the anomalies 

σ j 
i 

Standard deviation of the historical records of s j 
i 

after removing the anomalies 

Table 4 

QoS parameters name and definition 

Name Definition 

Response time The time between sending a request and receiving the reply is considered as a response time. More precisely, the summation of the 

processing time and the transmission duration is considered as a response time which is measured in seconds. 

Availability The total number of times that a service has been accessible to a total number of invocation (a probability value between [0, 1]). 

Reputation Reputation or fidelity is a measure of trustworthiness about a service from the users’ perspective (an average score between for example 0 

to 10). 

1
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∑ 

 ≤i ≤N 

x i j = 1 , ∀ j (5)

 i j ∈ { 0 , 1 } , ∀ i, j 1 ≤ j ≤ m i ∀ i, 1 ≤ i ≤ N (6)

An optimization model includes three main components: 1) The

bjective function in Equation 1 minimizes the cost of composite

ervice; 2) A set of constraints in Eqs. (2) to (4) control the value of

he objective function; and 3) Binary variable x ij which determines

hether a service s i 
j 

is selected or not. The Eq. (5) enforces the

odel to select exactly one candidate service per task t i . In next

ection, we improve this model to obtain an adaptive robust QoS-

ware service composition. 

. ARC: Anomaly-aware Robust Service Composition 

In the heterogeneous and distributed Cloud-integrated IoT en-

ironment, the QoS values of services change over time. These

hanges impact on constraints such as Eq. (2) . In this section, we

ropose a service composition framework, as shown in Fig. 4 , to

ddress the problem of service composition under QoS uncertainty.

here are four distinct components in our framework: 
• Abstract Composition Request formulates a business workflow as

a collection of abstract services. An abstract service can be ex-

ecuted by invoking a candidate service to perform task t i in a

workflow. Furthermore, for each abstract service, the user spec-

ifies the QoS constraints. As a result, this component prepares a

document including the required services and the correspond-

ing QoS constraints. 
• Candidate services with Advertised QoS is responsible for finding

the concrete services developed by third-party software com-

panies for each abstract service. Indeed, the third-parties ad-

vertise several Cloud and IoT services with same functionality

and different QoS values. The output of this component is a

list of candidate services which is prepared for each abstract

service. 
• Robust Service Composition is responsible for modeling SCP

based on Bertsimas and Sim robust optimization model. This

central component itself uses amount of perturbation and pro-

tection degree sub-components for setting ˆ a i j and � parameters,

respectively. The details are provided in 4.1 . 
• Computing QoS Uncertainty finds the amount of perturbation of

QoS values. This component utilizes the collected QoS informa-

tion from monitoring systems and exploits Isolation Forest, a
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Fig. 4. The Architecture of proposed ARC. 
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machine learning anomaly detection technique. The details are

provided in 4.2 . 

It is notable that our proposed framework is general and can be

applied to different types of applications. 

4.1. Dealing with uncertainty 

In order to overcome the problem of uncertainty in QoS val-

ues, we exploit the Bertsimas and Sim ( Bertsimas and Sim, 2004 )

robust optimization approach for the service composition prob-

lem. Robust optimization is a mathematical modeling technique to

handle the optimization problems when the data are uncertain

( Ben-Tal and Nemirovski, 2002 ). We chose this approach because

in contrary to the probabilistic approach, in the absence of reli-

able and complete historical data, it is still feasible to find a ro-

bust composite service. Bertsimas and Sim -based approach relies

on a single ˆ a parameter which can be determined by an expert

even with existing incomplete and unreliable historical data. An-

other advantage of robust optimization is its independency to the

specific assumptions (like a unique probability distribution) on the

QoS uncertainty ( Poss, 2014 ). Furthermore, this approach attempts

to make a trade-off between optimality and robustness ( Agra et al.,

2013 ) through a flexible adjustment of the level of conservatism of

the robust solutions through a parameter named Protection degree.

Eq. (7) , which comes from Bertsimas and Sim (2004) , formulates

the Bertsimas and Sim -based robust optimization method. 

minimize c T x 

sub ject to 
∑ 

j 

a i j x j + ζi �i + 

∑ 

j∈ J i 
p i j ≤ B i ∀ i 

ζi + p i j ≥ ˆ a i j y j ∀ i, j ∈ J i 

−y j ≤ x j ≤ y j 

ζi , p i j , y j ≥ 0 

(7)
In this equation, c is the coefficient of the objective function

i.e., service’s cost), B is the user’s constraints vector for parameters

i.e., constraint on aggregated QoS values) and x is a binary vari-

ble to determine which service is selected. Let x ∗ be the optimal

olution of Equation 7 . At optimality, clearly, y j = | x ∗ j | ; therefore,

n the equation, the term | x ∗j | is formulated as −y j ≤ x j ≤ y j . Also,

he terms ζ and p ij are the dual variables used in Bertsimas and Sim

ormulation which are not dependent on an application scenario.

ore information about the Bertsimas and Sim robust optimization

pproach can be found in Bertsimas and Sim (2004) . The J i is the

et of coefficients a ij , j ∈ J i (i.e., QoS values) which are subjected

o uncertain parameters. This means that only the parameters in-

luded in this set are allowed to change and take their worst-case

alue. These uncertain parameters are allowed to take values in in-

erval 
[
a i j − ˆ a i j , a i j + ˆ a i j 

]
where a ij is the advertised QoS value

or nominal value) and ˆ a i j is the amount of perturbation. As an

xample, consider the set J i = { 1 , 4 , 5 , 7 } , | J i | = 4 which means that

he first, fourth, fifth, and the seventh parameters of i th row of

oefficient matrix are uncertain parameters. The main idea of this

pproach is the ability to control the protection degree. The pro-

ection degree allows decision-makers to select throughout a range

etween hazardous or a conservative decision (i.e., worst-case sce-

ario). This feature is derived by using an uncertainty parameter

amed �. The parameter �i is not necessarily integer, and it takes

alue in the interval [0, | J i |]. This parameter helps decision-makers

o determine how many uncertain parameters in the J i must be

reated as their worst-case value. For example if � = 2 . 6 , it means

hat two parameters in the set J i are allowed to take their worst-

ase value and another parameter (let us call it a i t i ) changes by

(�i − 
 �i � ) ∗ ˆ a i t i ] , i.e., 0 . 6 ̂  a i t i . The value of ˆ a i j can be obtained em-

irically from existing historical QoS records (which are not neces-

arily sufficient and reliable). Obviously, if � = 0 , the model is con-

erted to a deterministic service composition problem (non of pa-

ameters take their worst-case value). Moreover, the � = | J i | means

hat all QoS values have to take their worst-case value. 
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Based on Eq. (7) , the robust QoS-aware service composition

odel for N tasks, m i ∈ M candidate services and uncertainty

round the response time values is defined in Eq. (8) . By solving

he Eq. (8) using mixed-integer programming (MIP) techniques, a

near-)optimal composite service subjected to the constraints is ob-

ained. It is notable that in this equation, the parameter �i lever-

ges the protection degree (i.e., the degree of risk around the

omposite service). By using this parameter, the decision-maker

an control the trade-off between robustness and optimality. In

ection 5.5 , we show how changes in this parameter impacts on

he optimality. 

Z = min 

∑ 

0 ≤i ≤N 

∑ 

j∈ M 

x i j ∗ Cost(s j 
i 
) 

ub jected to 

∑ 

0 ≤i ≤N 

∑ 

j∈ M 

RT ime (s j 
i 
) ∗ x i j + ζ ∗ � + 

∑ 

i ∈ I 

∑ 

j∈ J i 
p i j ≤ b RT ime 

ζ + p i j ≥ ˆ a i j ∗ x i j ∀ i, j ∈ J i 

∏ 

0 ≤i ≤N 

∑ 

j∈ M 

A v ail(s j 
i 
) ∗ x i j ≥ b A v ail 

1 
n 

∗ ∑ 

0 ≤i ≤N 

∑ 

j∈ M 

Reput(s j 
i 
) ∗ x i j ≥ b Reupt 

∑ 

0 ≤i ≤N 

x i j = 1 ∀ j ∈ M 

x i j ∈ { 0 , 1 } 

0 ≤ i ≤ N, 0 ≤ j ≤ m i 

p i j ≥ 0 , ζ ≥ 0 

(8) 

The proposed solution tries to provide an ”acceptable” perfor-

ance under most realizations of the uncertain parameters with

o distribution assumption on uncertain parameters. To this aim,

he bounds of the perturbation range of uncertain parameters are

efined by using existing data. Robust optimization only requires

he maximum and minimum of existing values of uncertain pa-

ameters to model uncertainty, which usually is accessible. It is

orth mentioning that while probabilistic approaches require re-

iable and sufficient historical data to fit distribution for QoS mod-

ling ( Pishvaee et al., 2011; Bertsimas and Sim, 2004; Bertsimas

nd Thiele, 2006 ), our robust optimization approach only needs

 bound (maximum and minimum value) for a given QoS at-

ribute which can be easily obtained even from insufficient histor-

cal data. Furthermore, contrary to simple worst-case QoS estima-

ion and modeling which results in solutions that are too conser-

ative, the robust optimization model addresses the issue of over-

onservatism using the following considerations: 

• In our model, we have a set named J i : It is the set of coeffi-

cients a ij , j ∈ J i , which are subject to uncertain parameters (un-

certain QoS values). This means among all parameters, only the

parameters included in this set are allowed to change and take

the worst-case value ( Bertsimas et al., 2011 ). 
• And, there is a parameter named �i . Using this parame-

ter, the robust optimization approach provides decision-makers

with flexibility in determining the level of conservativeness

( Bertsimas et al., 2011 ). This feature helps decision-makers to

avoid over-protection. In other words, this parameter allows the

decision-makers to control a trade-off between robustness and
optimality. o
A simple robust optimization works with a constant pertur-

ation rate, which is determined in advance and remains con-

tant without any adaption in response to changes in the opera-

ional environment. However, without incorporating the environ-

ent changes in finding a proficient perturbation rate, the model

ay result in a high cost of robustness (over-conservatism). There-

ore, in this manuscript, as the system continues, we estimate the

erturbation rate from abnormal-removed monitored data. In the

ollowing, we explain how our model finds the amount of pertur-

ation. 

.2. Finding amount of perturbation 

One crucial question is how the system determines the value

f perturbation in Eq. (8) . The proposed model in Eq. (8) con-

iders the worst-case QoS values according to the amount of re-

orted perturbation. Considering the motivation scenario discussed

n Section 2.1 , suppose that 〈 1.5, 1.6, 0.9, 2, 2.2, 10, 1.2 〉 are the

eported historical response time values captured from the invoca-

ion of the Navigation Recommender service. According to the ro-

ustness interval [ a i j − ˆ a i j , a i j + ˆ a i j ] , the broker must consider an

pdated value for ˆ a i j throughout the time especially in Cloud-

ntegrated IoT dynamic environment where sensor failures, inter-

ittent network connections, and sporadic access are the factors of

bnormal perturbation in QoS values. However, one can show that

he value of 10 seconds for the response time of the Navigation

ecommender service is abnormal. If the broker considers abnor-

al values in the calculation of perturbation rate, overestimation

akes place. Therefore, the broker is not able to provide an efficient

omposite service for the requester. Analysis of historical data pre-

ented in Section 5.4.1 proves that there are abnormal data points

n the response time which are called as anomaly ( Liu et al., 2012 ).

n order to eliminate the effects of anomalies in the proposed ro-

ust optimization model, we use Isolation-Tree based anomaly de-

ection technique ( Liu et al., 2008 ) in our environment adaption

hase. The Isolation Forest is an ensemble regressor that discovers

he anomalies in data. It builds an ensemble of random trees as a

ase estimator for a given dataset; anomalies are the points with

he shortest average path length from the tree root to the leaf. Iso-

ation Forest calculates an anomaly score = 2 
− E(h (χ )) 

nc(n ) , where h ( χ ) is

he number of edges in a tree for a particular data point χ , E ( h ( χ ))

s the average of h ( χ ) from a set of isolation trees, and c ( n ) is a

ormalization constant for a dataset of size n . 

s E(h (χ )) → 0 , anomalyscore → 1 (9) 

s the average number of edges in a tree goes to zero, the score

hows a higher degree of abnormality, as shown in Eq. (9) . The

odes of the tree are built by splitting instances based on ran-

omly chosen attributes with randomly chosen split points. Fig. 5

hows the result of anomalies that are detected by iForest. 

There are several reasons that we choose the iForest algorithm.

irstly, the basic assumption of IForest is that anomalies are few

nd different ( Moghaddam et al., 2018 ) and more susceptible to

solation; therefore, it is best-fitted for the highly skewed data

ardani-Moghaddam et al. . Secondly, compared with other algo-

ithms, iForest has a linear time complexity with a low memory

equirement ( Liu et al., 2008 ). Moreover, iForest has the ability to

cale up to find anomalies in extremely large historical records re-

ated to a large number of services in a dynamic environment of

oT ( Liu et al., 2012 ). Finally, iForest can easily (using less engage-

ent with parameters) find abnormal historical records of services

ithout relying on any distance or density measure (which de-

reases the computational cost). More discussions on time analysis

f iForest can be found in Sections 5.4.2 and 5.6 . 
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Fig. 5. A sample for iForest anomaly detection result. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1: An Overview of ARC . 

input : T = (t 1 , t 2 , ..., t N ) : T is a workflow including N tasks 

B = (b RT ime , b A v ail , b Reput ) : B is user’s constraints 

S i = { s 1 
i 
, s 2 

i 
, ..., s 

m i 
i 

} : s j 
i 

∈ S i presents jth candidate 

service for performing the i th task 

Q = { q 1 , q 2 , ..., q K } : Q defines the QoS values for s 
j 
i 

J i : Set of coefficients which are subject to uncertain 

parameters 

ˆ a i j : Maximum allowed amount of perturbation for 

each s 
j 
i 

identified by decision maker (experts’ 

opinion) 

param : �: Protection degree, 

�: The time period between adaption phases, 

ϒ: Contamination rate, i.e., the proportion of outliers 

in monitored QoS values 

output : RCS: The resulted robust composite service 

1 MQV ← ∅ /* At the start point, we do not have any 
monitored QoS values */ 

2 aHat i j ← ˆ a i j /* As the system continues working, the 
value of the state variable aHat will be updated 
gradually */ 

3 compositionRequestQueue.enqueue (Broker .accept()) 

4 while compositionRequestQueue ! = Empty do 

5 compositionRequestQueue.dequeue () /* Picking up a 
composition request and extracting required 
inputs and parameters from it */ 

6 coe f Mat ← Encoding tasks of T and services of S i into 

coefficient matrix using QoS values of Q 

7 BertSim ← Formulate the parameters: uncertainty set of J i , 

protection degree of �, and perturbation rate of aHat , 

which come from the BertsimasandSim approach 

8 Model ← Construct the robust optimization model based 

on the coe f Mat and BertSim 

9 Initialize RCS using a set of arbitrary services to form a 

composite service 

10 foreach model ∈ Model do 

11 if Cost( model) <Cost( RCS) then 

12 RCS ← model /* Evaluate the the solution based 
on objective function of Cost(S i ) and 
constraint B */ 

13 end 

14 end 

15 Print ( RCS) /* Resulted (near-)optimal robust 
composite service based on user’ constraint */ 

16 if � is elapsed then 

17 MQ V ← Q oSMonitoring() /* Utilize historical data 
from the monitoring subsystem */ 

18 anomalyRemov edMQV ← IsolatedF orest(MQV, ϒ) 

/* Remove the anomalies using the Isolated 
Forest with specified contamination rate ϒ */ 

19 aHat ← 

aHat Est imator(anomalyRemov edMQV ) /* Update 
the state variable of aHat using the 
anomaly-removed QoS values 
( anomalyRemov edMQV ) */ 

20 end 

21 end 
4.3. ARC algorithm 

While probabilistic approaches start by assuming that the un-

certainty has a probabilistic description, in the robust optimiza-

tion approach, the decision-maker forms a solution that is fea-

sible for any realization of the uncertainty in a given set with

a specified bound ( Bertsimas et al., 2011 ). The advantage of ro-

bust optimization-based service composition is two folds: first, it

does not start by assuming that the uncertainty has a probabilis-

tic description like a certain statistical distribution. Second, a ro-

bust optimization approach provides decision-makers with flexibil-

ity in determining the level of conservativeness ( Bertsimas et al.,

2011 ). Robust optimization (RO) will be applied in situations where

a model should reflect experts’ opinion, while cannot collect suf-

ficiently large statistical data to apply a probability theory-based

approach (because RO only needs the bound, i.e., the maximum

and minimum QoS values, which can be extracted from incomplete

historical records). Refer to motivation example in Section 2.1 , sup-

pose that for each service in Table 1 , there are a few and incom-

plete QoS historical records. Thus, the broker (refer to Fig. 2 ) can-

not fit any distribution on these services but still is able to obtain a

bound of QoS changes (maximum and minimum of historical QoS

records). Algorithm 1 demonstrates our proposed adaptive robust

service composition mechanism. Our algorithm consists of four dif-

ferent parts: 

• Inputs: The input part of the algorithm consists the tasks in a

given workflow T , the user’s constraint B ; pool of candidate ser-

vices S i , QoS values Q , set of coefficients which are subject to

uncertain parameters named J i , and maximum allowed pertur-

bation amount ˆ a i j for each s 
j 
i 

which are identified by decision-

maker (experts’ opinion). 
• Parameters: The next part of the algorithm provides the pa-

rameters: the protection degree �, the time period � between

adaption phases, and the contamination rate ϒ , i.e., the pro-

portion of outliers in the monitored QoS values used in the

anomaly detection phase. 
• Output: The third part of the proposed algorithm introduces a

variable RCS , which retains the robust (near-)optimal composite

service. 
• Operations: The last part contains various operations, includ-

ing Bertsimas and Sim approach for model construction, service

selection for composition, and anomaly detection for system
adaption. 
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1 https://www.planet-lab.org/ . 
The first step of the algorithm tries to declare a variable named

QV to store the monitored QoS values. We can see that the value

f this variable is set to Null. In other words, our proposed ARC

lgorithm can start its operation without requiring historical data.

he value of state variable aHat is initialized to ˆ a i j , which is the

aximum allowed perturbation amount for each candidate service

dentified by decision-maker. The value of state variable aHat is

urther updated in the main while loop. It is worth mentioning

hat while probabilistic approaches start by assuming that the un-

ertainty has a probabilistic description or lies on specific statis-

ical distribution, in robust optimization decision maker forms a

olution that is feasible for any realization of the uncertainty in a

iven set with specified bound ( Bertsimas et al., 2011 ). The state-

ent Broker.accept() (at line 3) accepts the incoming composition

equests continuously and adds them to the queue of composition-

equestQueue . 

The main while loop (lines 4 to 21) will be repeated until no

omposition request exists. In each iteration, three main stages are

perating: 1) Bertsimas and Sim -based robust optimization model

onstruction (lines 5 to 8); 2) Composite service selection (lines 9

o 15); 3) Anomaly detection and system adaption (lines 16 to 20).

n the first stage of the while loop (line 5), the algorithm picks up

 composition request from the queue and extracts required inputs

like tasks T and candidate services S i ) and parameter � from the

equest. Encoding tasks of T and services of S i into the coefficient

atrix using QoS values of Q is the next operation. Our algorithm

ormulates the components uncertainty set of J i , protection degree

f �, and perturbation rate of aHat which come from the Bertsi-

asandSim approach in Eq. (8) . Finally (line 8), the algorithm con-

tructs the robust optimization model based on the output of steps

 and 7. 

Refer to Fig. 2 , when a user submits a composition request

namely R ), the system 1) retrieves the available services from

he service repository, 2) creates an arbitrary initial composite ser-

ice and assigns to RCS , 3) computes the aggregated cost of the

omposite service, and 4) searches for a better composite service

hat satisfies R (according to user’s constraints). More precisely, the

oreach loop is executed (lines 10 to 14) for each composition re-

uest. This inner loop refers to the iterative evaluation of all pos-

ible composite services. It makes a composite service as an in-

ut of function Cost and returns the aggregated cost of the current

omposite service. It is worth mentioning that the best compos-

te service is obtained by assessing the aggregated cost of whole

orkflow. This is because, in our system, the task-to-service map

s generated for the whole workflow, i.e., the best composite ser-

ice is calculated based on all tasks in a given workflow ( T ). At line

5, the robust (near-)optimal composite service is outputted. 

The last important part of the algorithm tries to deal with sys-

em adaption (lines 16-20). After a composition request is resolved,

he algorithm checks whether it is the time to adapt or not by

hecking a timer and comparing it with �. In this situation, if the

daption time arrives, first, the system refers to monitoring sub-

ystem (line 17) to utilize the existing historical data (in our al-

orithm, the container MQV retains these data). In the next step,

he abnormal QoS values are removed from the MQV container by

sing the subsystem IsolatedForest(MQV, ϒ) with specified contam-

nation rate ϒ . The parameter ϒ determines the proportion of out-

iers that are about to be removed. The anomaly-removed QoS val-

es are set to a new container anomalyRemovedMQD (line 18). For

daption phase, the value of the state variable aHat is updated by

nvoking aHatEstimator (anomalyRemovedMQV) (line 19). This adap-

ion adjusts the system settings effectively and efficiently. This al-

orithm not only faces uncertainty using the Bertsimas and Sim ro-

ust optimization approach, but it also adjusts the amount of per-

urbation periodically according to the time interval of �. If the

ccuracy is most important in a system, this parameter can be set
o lower value, which increases the number of invocations of the

nomaly detection subsystem. 

. Performance evaluation 

.1. Simulation configuration 

The ARC algorithm has been evaluated in different scenar-

os of service composition. Due to the dynamic nature of Cloud-

ntegrated IoT service environments, working on real QoS values

f candidate services is crucial for an accurate QoS estimation.

his is because neither random generated QoS values (based on

pecific probabilistic distribution) nor synthetic QoS values (using

imulation packages like NS3) do not reflect the real-world un-

ertainties. According to the literature, many researchers ( Wang

t al., 2010; Schuller et al., 2012; Ye et al., 2014; Mostafa and

hang, 2015 ) used randomly/synthetic generated QoS values (re-

ponse time, etc.). Although using these generated QoS values is

asy to access and straightforward, it does not reflect the real-

orld behavior of QoS. In other words, for effective uncertainty-

ware service composition, it is crucial to deal with a real dataset.

s an example, when an end-user invokes a service, four factors

ause a delay in the communication networks: transmission delay,

rocessing delay, queuing delay, and propagation delay. Hence, by

sing a real-world dataset, we can also reflect the impact of uncer-

ainty of communication networks in the QoS values. 

The experiments are conducted on a real-world QoS dataset

hat consists of 1,974,675 real-world web service invocations by

39 service users from 30 countries on 5825 real-world web ser-

ices in 73 countries reported by Zheng et al. (2014) . A num-

er of computing nodes from the PlanetLab 1 have been employed

o serve as service users. PlanetLab is a global research network

hat supports the development of new network services and con-

ists of 1353 nodes at 717 sites. The dataset includes informa-

ion of 339 service users comprising user ID, IP address, country,

S (Autonomous System) number, latitude, longitude, region, and

ity. Moreover, information of 5.825 web services including service

D, WSDL address, service provider, IP address, country, AS, lati-

ude, longitude, region, city are included in this dataset. We gen-

rate the cost values synthetically as a function of the response

ime values according to Schuller et al. (2012) . The composite ser-

ice considered in the simulation scenarios has a sequential struc-

ure since any other composition structures such as loop, paral-

el, and condition can be transformed into a sequential structure

 Zheng et al., 2011; Alrifai et al., 2012; Dou et al., 2013 ) through

he methods mentioned in Alrifai et al. (2012) ; Zheng et al. (2013) ;

ou et al. (2015) . For example, a loop structure is a specific num-

er of repetitions of sequence structure. 

The proposed robust optimization problem of Eq. (8) is mod-

led as mixed-integer programming and solved by IBM ILOG CPLEX

ptimizer. For anomaly detection, we used the Isolation Forest al-

orithm from the scikit-learn machine learning library in Python

ci . Isolation Forest is introduced in 2008 and became available

n scikit-learn v0.18 in 2016. The experiments are conducted on a

achine with Intel(R) Core(TM) i7-6650U 2.21 GHz processor and

6GB RAM. The machine is running under Windows 10. 

.2. Performance metrics and baselines for comparison 

The performance of the ARC algorithm is compared to the fol-

owing approaches proposed by existing works: 

• Information Theory-based unreliable service selection ( iTheory-

based ) ( Wang et al., 2017 ): In the iTheory-based approach, un-

https://www.planet-lab.org/
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reliable services are filtered in uncertain service filtering phase

of service composition based on two well-known criteria of En-

tropy and Variance. We select this approach since the authors

have achieved an impressive performance in comparison with

other approaches like the Skyline approach. The candidate ser-

vices with higher variance and entropy are the most probable

services for ignoring. The entropy value is useful when the vari-

ance of two candidate services are the same. 
• QoS-aware Clustering-based service selection for ambient intel-

ligence ( cluster-based ) ( Khanouche et al., 2019 ): This new ap-

proach has been selected for comparison because it presents

a good performance in terms of composition optimality and

it performs better than other clustering approaches like

( Mabrouk et al., 2009 ). Furthermore, this approach has been

proposed for ambient intelligence, which is very close to our

work in terms of considering the functionality of smart ob-

jects like sensors as a software service. They cluster candidate

services into three categories: High-QoS, Middle-QoS, and Low-

QoS based on QoS. 
• Deterministic service selection for service composition ( dSelec-

tion )( Zeng et al., 2004 ): This approach proposes a goal-driven

service composition in mobile and pervasive computing to

avoid composition failure. However, it does not consider the

uncertainty in advertised QoS values in the process of service

composition. Therefore, using an optimization algorithm, this

approach leads to an optimal composition. We have consid-

ered this approach as a baseline to draw a comparison between

our proposed approach and the aforementioned approaches in

terms of optimality. 

In order to prove the effectiveness of the ARC algorithm com-

pared to the approaches mentioned above, we used the following

metrics: 

• Optimality of the composition: According to the definition in

Wang et al. (2017) and Khanouche et al. (2019) , this metric il-

lustrates the ratio between obtained fitness and an ideal (opti-

mum) fitness for a given composite service. Formally: 

Optimality = 

F ARC 

F optimal 

(10)

• Anomaly awareness: To assess the role of anomaly awareness in

our proposed approach, we have defined the anomaly awareness

metric. Anomaly-awareness can be performed using the analy-

sis of historical monitored QoS values. Making a correct deci-

sion to the inclusion or exclusion of a typical candidate service

in the composition phase is dependent on fine-grained uncer-

tain service identification. 
• Protection degree: Protection degree, which allows the

decision-makers to control a trade-off between robustness

and optimality. This metric is defined as an ability of the

system to adjust robustness by using a subset of variables

as the uncertain parameters. A decision-maker specifies the

protection degree by changing the parameter � in (8) . 
• Time Complexity: In order to have a better understanding of

the performance of the proposed method, we analyze the time

taken by the procedure of dealing with uncertainty , using

asymptotic notation. For a fair comparison, we used the same

algorithm for the composition phase (the service selection is

performed by using 0-1 integer programming to find and se-

lect services according to user preferences and QoS constraints)

( Wang et al., 2017 ). In other words, dealing with uncertainty is

taken into account as a core part of each approach. 

5.3. Optimality of composition 

In the first experiment, the impact of the number of candi-

date services on the ARC performance is evaluated. The number
f candidate services for performing each task varies from 5 to

0. Based on our motivation scenario discussed in Section 2.1 , we

et the number of tasks to 6. Many researchers in literature have

valuated their proposed approach by applying it to their moti-

ation scenario. For example, in Ye et al. (2014) , the authors use

he trip planning scenario containing six tasks as their testing en-

ironment. Also, the authors in Hwang et al. (2014) consider five

asks in their scenario, i.e., Electronic Product Purchase compos-

te service, Chen et al. (2016a) used ten service classes (tasks)

n their mobile and pervasive computing scenario. Other stud-

es like Zhao et al. (2015) ; Zheng et al. (2016) ; Liu et al. (2016) ;

eng et al. (2015) employed 10, 7, 9, 4 tasks for the evaluation,

espectively. Importantly, iTheory-based ( Wang et al., 2017 ) and

luster-based ( Khanouche et al., 2019 ) approaches set the number

f tasks in a workflow to 5 and 3, respectively. 

The protection degree � and perturbation amount are set to

 and the value of standard deviation of QoS historical record,

espectively. For a fair comparison, the value of protection de-

ree is considered as 6 for maximum protection degree (mini-

um level of optimality). According to Wang et al. (2017) and

hanouche et al. (2019) , we chose 1/5 candidate services with

ower variance and 10% of candidate services belong to the High-

oS cluster for iTheory-based and cluster-based , respectively. 

Fig. 6 demonstrates the optimality of composition obtained

ith the ARC algorithm and other algorithms with the increment

f candidate services number. The ARC algorithm uses a mathe-

atical robust optimization programming that is based on consid-

ring all candidate services in the process of selection. This finding

an be explained by the fact that iTheory-based and cluster-based

lgorithms filter the unreliable candidate services from search

pace, and it means they take into account only those candidate

ervices which provide the lower variance and higher fitness, re-

pectively. Although this filtering helps the system to decrease the

ize of the search space, it increases the probability of finding so-

utions with less optimality in comparison with the optimal ap-

roach. As shown in Fig. 7 , although the selection of reliable can-

idate services provides extra cost for the user (requester of the

omposite service), the ARC algorithm proposes the better compos-

te service in comparison with other approaches in terms of cost

price). 

In the second experiment, in order to investigate the general-

ty of the proposed method, we have evaluated the performance

f the ARC algorithm with different workflow sizes (number of

asks). The number of tasks in each workflow varies from 5 to

0. The number of candidate services for each task is set to 5.

he protection degree � value and perturbation amount are set

o N and the value of the standard deviation of QoS historical

ecord, respectively. For a fair comparison, we increase the value

f protection degree according to the N to obtain a maximum

rotection degree that results in finding a near-optimal solution

ather than an optimal one. According to Wang et al. (2017) and

hanouche et al. (2019) , we chose 1/5 candidate services with

ower variance and 10% of candidate services belong to the high-

oS cluster for iTheory-based and cluster-based , respectively. Fig. 8

ndicates the optimality of composition obtained with the ARC al-

orithm and other algorithms with the increment of workflow size.

e found that the optimality obtained by our approach is always

igher than iTheory-based and cluster-based approaches with an in-

reasing number of tasks. These experimental results prove the

enerality of the ARC algorithm in finding a near-optimal solution

or different workflow sizes. 

However, removing or discarding the candidate services be-

ore the composition phase (in iTheory-based and cluster-based ap-

roaches) reduces the search space, it leads to a costly composi-

ion. Fig. 9 indicates that in terms of composition cost, the ARC al-

orithm is able to narrow the near optimal -optimal gap effectively
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Fig. 6. Optimality of composition versus the number of candidate services. 

Fig. 7. Cost (price) of composite service versus the number of candidate services. 
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ompared with the optimal solution that is obtained in the dSelec-

ion approach. 

.4. Anomaly awareness 

Both cluster-based and iTheory-based methods define the un-

eliable candidate services using the historical records. However,

he cluster-based approach determines clusters of service in terms

f High/Medium/Low QoS level without investigation of the vari-

bility and anomalies in historical records. To utilize the historical

ecords, iTheory-based method proposes a novel reliable service se-

ection based on variance and entropy of candidate services. The

rst and second phases of this approach are devoted to QoS uncer-

ainty computing and uncertain service pruning, respectively. How-

ver, removing the uncertain services reduces the search space in
he pre-composition phase, it affects on obtaining an optimal com-

osition. Especially when a candidate service that may be part of

he optimal composition is removed, the optimality of composition

lso will be lost. These limitations are the major drawbacks of the

Theory-based and cluster-based approaches. 

While simple robust service composition is not able to adapt it-

elf with changes in QoS values (which leads to wide perturbation

anges, i.e., over-conservatism), our proposed adaptive robust ser-

ice composition can estimate the bounds of the perturbation rate

f uncertain parameters periodically. Fig. 10 shows the impact of

he protection degree on the cost of the composite service (i.e., op-

imality) according to the different number of candidate services.

his figure shows that ARC achieves better performance (composite

ervice with lower cost) than simple robust optimization. This is

ecause in simple robust optimization, the amount of perturbation
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Fig. 8. Optimality of composition versus the workflow size. 

Fig. 9. Cost (price) of composite service versus the workflow size. 
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selection. 
for uncertain QoS parameters is considered as a fixed value, which

leads to over-conservatism in the process of candidate services se-

lection. Nevertheless, in ARC, as the system continues working, it

can invoke the monitoring subsystem to access the recorded QoS

values to update the perturbation amount. From the dataset, in this

experiment, we used 320 monitored QoS values (called as transac-

tions) for each service in a composite service. Fig. 11 shows the

uncertainties (changes in QoS values) along with existing anoma-

lies which are adopted from transaction logs of two services of the

evaluated workflow. These changes come from the inherent uncer-

tainty of the execution of services and communication networks

in the real-world. To achieve an accurate composition, it is essen-

tial to remove existing anomalies before calculating the amount of

perturbation from transaction logs. 

To validate the proficiency of ARC, in the next experiment, we

evaluate Anomaly-aware robust service composition with a simple

robust service composition. To this end, the aggregated cost of the
omposite service is adopted as the main comparison criterion of

ur experiments. We conduct a totally of 75 experiments in the

ve categories. In each category, user’s constraint ( b RTime in Eq. (8) )

s set to 5, 10, 20, 40 and 60 seconds accordingly. The number of

asks is set to 10, whereas the number of candidate services for

ach task varies between 10 and 50. Additionally, we set the con-

amination ratio of Isolation Forest to 0.02. It means that 0.02 of

onitored QoS data will be treated as outliers. From the dataset,

or each service, we consider 320 historical records of monitored

esponse time values. Fig. 10 shows the cost of a composite ser-

ice regarding the number of candidate services for different cat-

gories. In all categories, ARC offers a cheaper composite service

ithout any violation of the user’s constraint. It means that set-

ing a fixed amount of perturbation for QoS parameters, which

re used in simple robust service composition, leads to underes-

imation or overestimation in the process of candidate services



M. Razian, M. Fathian and R. Buyya / The Journal of Systems and Software 164 (2020) 110557 15 

Fig. 10. Impact of the protection degree on the cost of the composite service with different number of candidate services 
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.4.1. Discussion 

The ARC algorithm calculates the amount of perturbation (pa-

ameter ˆ a i j in Eq. (8) ) for standard service to determine the level

f uncertainty for that service. The ARC algorithm repeats this pro-

edure based on monitored historical QoS records for all candidate

t  
ervices. For each candidate service s 
j 
i 
, the utility value is set to μ j 

i 
,

nd the perturbation amount is set to σ j 
i 
, where μ j 

i 
and σ j 

i 
repre-

ent the mean and standard deviation of the historical records af-

er removing the anomalies, respectively. As an example, we found

hat the iTheory-based approach removes the services shown in
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(a) Identification of abnormal QoS records for Service 1

(b) Identification of abnormal QoS records for Service 2

Fig. 11. Finding abnormal historical records using an unsupervised Isolation Trees-based (iForest) approach. 
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Fig. 12. Execution time of procedure of abnormal records identification (320 histor- 

ical records per candidate service). 
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ig. 11 , because of their higher variance. However, using a fine-

rained analysis, we found out that the reason for the high vari-

nce is some anomalies in historical records, which is prevalent

n Cloud and IoT based services. An in-depth analysis of types of

erformance anomalies, including CPU and memory bottlenecks, is

erformed in Moghaddam et al. (2018) . Therefore, with the knowl-

dge of anomaly detection analysis, we calculate the amount of

erturbation for these services instead of pruning them. Mean-

hile, a question that may arise is whether simple threshold-based

ltering is usable or not? Due to the dynamicity of Cloud and IoT

nvironments, calculation of a predefined and fixed threshold is

ot possible. The experiments indicate that the level of this thresh-

ld for a service such as Service 1 in Fig. 11 a can be different from

nother one like Service 2 in Fig. 11 b. Furthermore, for the sake

f simplicity, we adopt response time as target QoS parameters in

his experiment. However, in real-world scenarios, the number of

oS attributes are not limited to one or two attributes; indeed, the

alculation of threshold for each attribute in the threshold-based

pproach is not feasible. 

.4.2. Time of anomaly detection subsystem 

To asses the efficiency of anomaly detection procedure, we have

valuated computation time required for abnormal record identifi-

ation using two types of datasets. The first is the real-world QoS

ataset introduced in Section 5.1 . We also performed experiments

ith a randomly generated dataset with the uniform distribution

hat contains the QoS value of candidate services. Each experiment

onsisted of several candidate services in a range of 10 to 500 by

ncrement 20. The results indicate that the procedure of abnormal

ecords identification increases linearly according to the number

f candidate services. As shown in Fig. 12 , the required times for

nding abnormal records in the real dataset and random dataset

re nearly the same when the number of candidate services grows.

he results also show that in a real environment with a high num-

er of candidate services, it takes 10.679 s when the number of

andidate services is 100, and the total number of historical QoS

alues is 32K records. Note that, this fine-grained procedure can

e launched periodically according to the system configuration (re-

er to Algorithm 1 , lines 16 to 20) to identify the abnormal records

nd determine the amount of perturbation. 

.5. Impact of protection degree 

In order to verify the influence of the parameter of protection

egree (i.e., �) on the aggregated cost (optimality) of the com-

osition, we consider two cases of experiment depending on the

umber of candidate services and the workflow size. This param-
ter allows the decision-makers to control a trade-off between ro-

ustness and optimality. Neither the iTheory-based approach nor

he cluster-based method considers this feature for the decision-

aker. In our proposed robust optimization method, the parameter

leverages the protection degree (i.e., the degree of risk around

he composite service). In the following experiments, we gradually

ncrease the value of �, to verify the correctness of this parameter.

Case 1 In this case, we prove the correctness of ARC depend-

ng on the different number of candidate services. In the experi-

ents, the value of � is considered as 0.5, 0.75, 1, 1.5, and 2 to 12

y the increment 1 , and the size of workflow is set to 10. The real

esponse time values are extracted from the aforementioned real

ataset to assign the candidate services. We consider 10 and 40

andidate services for each task and set the user’s constraint (on

ggregated cost) to 10 s. As shown in Fig. 13 , the aggregated cost

f composite service increases when the protection degree (i.e., the

alue of �) increases. According to the results, we can see that

hen the value of � is 0.5, the composition cost is 191.54 and

91.09 for each experiment, respectively. Moreover, in the maxi-

um protection degree (i.e., � = 10 ), the cost of the composition

as been grown 1.51% (194.44) and 1.05% (193.11). The main reason

ehind this growth is that when the protection degree increases,

he number of abstract services that must be taken their worst-

ase value (according to Eq. (8) ) also increases. As an example,

onsider that the advertised value of a typical service is 2.5 ms,

nd the amount of perturbation has been calculated as 0.2 ms by

ur anomaly-aware system. In the worst-case scenario, the value

f response time for this service will be considered as 2.2 ms. No-

ably, considering 2.2 for this service may result in a violation from

he user’s constraint (See Eq. (2) ); thus, the ARC algorithm has to

earch for another service with lower response time, which is more

xpensive than the previous one. Also, when the number of candi-

ate services increases, the solution space grows and ARC can find

etter (cheaper) composite service (See Fig. 13 for the Cand = 10 vs

and = 40 ). From the results, ARC effectively allows the decision-

akers to control the trade-off between robustness and optimality

or Cloud-integrated IoT environments. 

Case 2 This experiment is to prove the correctness of the ARC

lgorithm concerning the workflow size. In the experiments, the

alue of � is considered as 1, 5, 10, 20, 30, 40 and the number of

andidate services is fixed to 5 for all scenarios. Each scenario con-

ists of different workflow sizes ranging between 10 to 40 by in-

rement 10. As shown in Fig. 14 , the aggregated cost of composite

ervice increased when the protection degree increased. The rea-

on is that when the number of candidate services that are allowed

o take their worst-case value increases, the ARC algorithm selects

he services with a lower response time to satisfy the user’s con-

traint. The reason for choosing services with lower response time

alue (that are more expensive) is that the ARC algorithm adds the

mount of perturbation to the QoS value. This increases the left-

and side value of the constraint in Eq. (2) . Therefore, in order to

atisfy the user’s constraint, the broker selects services with lower

esponse times, which are more expensive than the other services.

his feature enables the decision-maker to make a flexible decision

etween a risky decision ( � = 0 ) and a decision with the highest

rotection level ( � = 10 ). 

.6. Time complexity analysis 

To evaluate the efficiency of our proposed approach, we analyze

he order of growth of the running time of each approach using

symptotic notation. Basically, calculating entropy on Integer num-

ers (like response time as discussed in iTheory-based approach)

nvolves categorizing the transactions (historical QoS records) into

 finite number of intervals. Presumably, the time complexity of

he entropy calculation applied to data of length n , and B bins are
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Fig. 13. Impact of the protection degree on the cost of composite service w.r.t number of candidate services. 

Fig. 14. Impact of the protection degree on the cost of composite service w.r.t 

workflow size. 
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O ( n.B ) (the exact definition of B depends on the implementation of

uncertain service filtering method). Considering a composition of N

abstract services in iTheory-based approach, the time complexity of

the uncertain service filtering based on the entropy and variance

is then O (N.B.n ) + O (N.m i .n ) + O (N.m i .n ) where n represents the

number of the transactions, m i is the number of candidate services

for i th task, and B is the number of intervals. Considering a com-

position of N abstract services in cluster-based approach, the time

complexity of the candidate services filtering based on the utility

value is then O (N.m i .k.q.t) + O (N.m i ) where m i is the number of

candidate services for i th task, k is the number of clusters, q is the

number of QoS attributes, and t refers to the number of iterations

before the convergence of the method. There are two input pa-

rameters in the iForest algorithm: the sub-sampling size ϕ and the

number of trees t . Authors in Liu et al. (2012) found ϕ = 256 and

 = 100 empirically. Therefore, the training time complexity is con-

stant when the subsampling size and ensemble size are fixed. Con-

sidering a composition of N abstract services in our approach, the

time complexity of the finding anomalies and amount of perturba-

tion is then O (N.m i .n ) + O (N.m i ) where n represents the number

of the transactions, and m i is the number of candidate services for

i th task. It is worth mentioning that while a large k in cluster-based

and large B in iTheory-based increase the computation time sub-

stantially ( Liu et al., 2012 ), ARC can be scaled up to handle large
nd high-dimensional datasets. Finally, unlike clustering-based al-

orithms such as K-means , the use of the iForest method does not

mpose specific assumptions on the data to be partitioned. 

. Conclusions and future work 

In this paper, an A nomaly-aware R obust service C omposition

ARC) architecture is proposed to address the problem of ser-

ice composition under uncertainty around QoS parameters for

he Cloud-integrated IoT environment where the heterogeneous

mart things are connected to Cloud. Traditional approaches for

ealing with uncertainty filter the uncertain services in the pre-

omposition phase, which leads to a non-optimal solution. We ap-

lied a mathematical robust optimization method to concern with

n uncertainty of the advertised QoS values. This means our pro-

osed approach is able to encounter the perturbation in the QoS

alues without depending on a specific statistical distribution. One

f the crucial features of ARC is a numerical simplicity-controlled

arameter, namely ( protection degree ), which allows the decision-

akers to control a trade-off between robustness and optimality.

urthermore, to enhance the composition optimality, we extended

he proposed architecture with an adaption phase to adjust the re-

uired parameters of our robust model. Adaption phase exploits

 machine learning anomaly detection system to deal with uncer-

ain services in a fine-grained manner by the identification of ab-

ormal QoS records instead of filtering the service. Most notably,

e observed that the adaption phase for the service composition

roblem is critical in the Cloud-integrated IoT dynamic environ-

ent where sensor failures, intermittent network connections, and

poradic access cause some anomalies in QoS monitored values.

oreover, we applied a series of experiments using a real dataset

o verify and validate the performance of our proposed ARC. The

xperiment results show that the proposed approach significantly

utperforms existing solutions and achieves 14.55% of the average

mprovement in the finding optimal solution than previous works

ike information theory-based and the clustering-based method. 

This study can be extended in several directions. First, the

ethod used to solve the robust optimization model is based on

ixed-integer programming. We will continue to investigate an

mproved method by applying the meta-heuristic algorithm to find

he optimum service set. Second, other QoS parameters like en-

rgy consumption also can be investigated as an uncertain QoS

arameter in future work. In consequence, it is still an open re-

earch problem to develop a more efficient dynamic QoS-aware
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ervice composition method with polynomial time complexity and

 high-quality composite service for new dynamic Internet Comput-

ng paradigms like fog and edge computing. 
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