Future Generation Computer Systems 28 (2012) 861-870

Contents lists available at SciVerse ScienceDirect i
TEE A

Future Generation Computer Systems

=2

journal homepage: www.elsevier.com/locate/fgcs

The Aneka platform and QoS-driven resource provisioning for elastic
applications on hybrid Clouds

Rodrigo N. Calheiros?, Christian Vecchiola?, Dileban Karunamoorthy?, Rajkumar Buyya **

2 Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computer Science and Software Engineering, The University of Melbourne, Australia
b Manjrasoft Private Limited, Melbourne, Australia

ARTICLE INFO ABSTRACT

Article history:

Received 1 June 2010
Received in revised form
4]july 2011

Accepted 21 July 2011
Available online 29 July 2011

Cloud computing alters the way traditional software systems are built and run by introducing a utility-
based model for delivering IT infrastructure, platforms, applications, and services. The consolidation of
this new paradigm in both enterprises and academia demanded reconsideration in the way IT resources
are used, so Cloud computing can be used together with available resources. A case for the utilization of
Clouds for increasing the capacity of computing infrastructures is Desktop Grids: these infrastructures
typically provide best effort execution of high throughput jobs and other workloads that fit the model of
the platform. By enhancing Desktop Grid infrastructures with Cloud resources, it is possible to offer QoS
to users, motivating the adoption of Desktop Grids as a viable platform for application execution. In this
paper, we describe how Aneka, a platform for developing scalable applications on the Cloud, supports such

Keywords:
Cloud computing
Resource provisioning

Hybrid Clouds a vision by provisioning resources from different sources and supporting different application models. We
Spot market highlight the key concepts and features of Aneka that support the integration between Desktop Grids and
Aneka

Clouds and present an experiment showing the performance of this integration.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Cloud computing [1] led to an innovative approach in the
way in which IT infrastructures, applications, and services are
designed, developed, and delivered. It fosters the vision of any
IT asset as a utility, which can be consumed on a pay-per-
use basis like water, power, and gas. This vision opens new
opportunities that significantly change the relationship that
enterprises, academia, and end-users have with software and
technology. Cloud computing promotes an on-demand model for
IT resource provisioning where a resource can be a virtual server,
a service, or an application platform.

Three major service offerings contribute to defining Cloud
computing: Infrastructure-as-a-Service (IaaS), Platform-as-a-Service
(PaaS), and Software-as-a-Service (SaaS). Infrastructure-as-a-
Service providers deliver on-demand components for building
IT infrastructure such as storage, bandwidth, and most com-
monly virtual servers, which can be further customized with the
required software stack for hosting applications. Platform-as-a-
Service providers deliver development and runtime environments

* Corresponding author at: Cloud Computing and Distributed Systems (CLOUDS)
Laboratory, Department of Computer Science and Software Engineering, The
University of Melbourne, Australia. Tel.: +61 3 8344 1335; fax: +61 3 9348 1184.

E-mail address: raj@csse.unimelb.edu.au (R. Buyya).

0167-739X/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2011.07.005

for applications that are hosted on the Cloud. They allow abstrac-
tion of the physical aspects of a distributed system by providing
a scalable middleware for the management of application exe-
cution and dynamic resource provisioning. Software-as-a-Service
providers offer applications and services on-demand, which are ac-
cessible through the Web. SaaS applications are multi-tenant and
are composed by the integration of different components available
over the Internet.

The offer of different models on which computing resources can
be rented creates new perspectives on the way IT infrastructures
are used, because Cloud offers the means for increasing IT resource
availability whenever necessary, by the time these resources
are required, reducing costs related to resource acquisition and
maintenance.

A case for exploring such a feature of Clouds is in Desktop Grids,
which are platforms that use idle cycles from desktop machines to
achieve high-throughput computing [2]. Typically, applications are
executed in such platforms on a best-effort basis, as no guarantees
can be given about the availability of individual machines that
are part of the platform. If Desktop Grid resources are combined
with Cloud resources, a better level of confidence about resource
availability can be given to users, and so it is possible to offer some
QoS guarantees related to the execution time of applications at a
small financial cost.

Aneka [3] is a Platform-as-a-Service implementation providing
amiddleware for the development and deployment of applications
in private or public Clouds. Unlike earlier frameworks, such as

862 R.N. Calheiros et al. / Future Generation Computer Systems 28 (2012) 861-870

Condor [4] and ProActive [5], Aneka is the first middleware
technology to provide a service-oriented container framework that
allows realization of different programming models and enables
seamless integration of enterprise computing resources (e.g.,
Desktop Grids and servers) with public Cloud resources. The Aneka
framework has been used to implement various programming
models including Thread, Task, MapReduce, and deployment of
their applications on private and public Clouds seamlessly. It
is important to note that Aneka is the first Cloud application
platform supporting market-oriented resource provisioning for
optimal leasing of resources from public Clouds to minimize the
cost for consumers of Aneka applications.

In a previous work [6], we discussed how Aneka supports
scientific applications by allowing provisioning of resources from
typical scientific IT infrastructures including Grids and Clouds.
This paper extends such a discussion in the context of Desktop
Grids, providing a thoroughly description of how Aneka goes
beyond what current Desktop Grid platforms offer to users by
supporting hybrid Desktop Grids and Clouds and supporting
different application models. In summary, the key contributions of
this paper are:

e It presents the key components of Aneka, its service-oriented
container architecture that allows realization of different
programming models and enables seamless integration of
enterprise computing resources (e.g., Desktop Grids and
servers) with public Cloud resources;

e It proposes a new provisioning algorithm that combines
Desktop Grids and public Cloud resources in order to execute
distributed applications within a user-defined deadline;

e It demonstrates experimentally Aneka and its new provisioning
algorithm’s ability to dynamically lease resources to meet
deadlines with fewer public Cloud machines and with less
budget expenditure than existing approaches by utilizing
Amazon EC2 Spot Instance resources.

The rest of the paper is organized as follows: Section 2
presents systems that are related to Aneka; Section 3 describes
the general architecture of Aneka and its major components;
Section 4 describes how Aneka supports Desktop Grids and how
Aneka scales these platforms with Cloud resources with the use of
Spot Instances; Section 5 presents experiments aiming at assessing
the performance of the middleware when running applications.
Finally, Section 6 presents conclusion and further works.

2. Related work

Condor [4] is a Desktop Grid system which was later expanded
to support Grid applications. It allows formation of local pools of
resources that can exchange resources with other pools, likewise
typical Grid middleware. XTremWeb [7] is a Desktop Grid system
that allows execution of unmodified applications in idle desktops.
Aneka, on the other hand, can manage resources from multiple
sources such as desktops, clusters, Grids, and Clouds, both physical
and virtual to execute applications with SLA. Moreover, because
Aneka was designed to support Cloud environments, management
of budget related to execution of applications is performed by the
platform itself, while the other approaches cannot manage this
aspect because they were designed for Grid environments, that are
typically based on cooperation rather economical benefit.

ProActive [5] is a middleware for parallel, distributed, and
multi-core programming. It provides a set of APIs for develop-
ment of distributed implementations of different applications,
including embarrassingly parallel applications, Monte-Carlo sim-
ulations, SPMD, and workflow applications. A distinctive feature
of ProActive with respect to the previous frameworks is its abil-
ity to harness virtual resources from Cloud computing infrastruc-
tures in addition to desktop machines, clusters, and Grids. Even

though ProActive supports different programming models and re-
sources, it is based on Java architecture and features (such as RMI
and classes) for supporting distributed execution of applications,
while Aneka provides a service-oriented container model, which
allows creation of multiple programming models using its service
architecture. As a result of this, Aneka framework has been used to
implement various programming models including Thread, Task,
MapReduce, and deployment of applications created using these
models on private and public Clouds. In addition, Aneka is the first
Cloud application platform to support market-oriented resource
provisioning for optimal leasing of resources from public Clouds
to minimize the cost for consumers of Aneka applications.

BOINC [8] is a framework for volunteer and Grid computing.
It allows turning desktop machines into volunteer computing
nodes that are leveraged to run jobs when such machines become
inactive. Because it targets volunteer desktops, it strongly relies
on tasks replication to achieve reliability in the results. Moreover,
job execution is based in best-effort, and few guarantees are
given about deadlines for application execution. The later can be
achieved by Aneka, because it can provision resources from reliable
sources to complement desktop resources if deadlines are not
being achieved.

Falkon [9] is a task execution framework. Together with
Swift, a parallel scripting language for scientific applications, it
supports the execution of many-task computing applications. It
has been mostly designed to support the execution of scientific
workflows and parameter sweeping applications and has peta-
scale scientific environments as its target infrastructure. Aneka, on
the other hand, has been designed to support both scientific and
enterprise applications, and it targets private Clouds as the primary
infrastructure. Therefore, requirements from both systems are
different, which led to different implementation strategies and
different capabilities of each system. For example, Falkon does not
address the problem of efficient provisioning of Spot Instances
resources to applications, as does Aneka.

H20 [10] is a component-based, service-oriented framework
for Grid computing. Similarly to Aneka, it provides a runtime
middleware supporting the deployment and discovery of services.
Based on a container model similar to the applied on Aneka, H20
aims to be a general framework for integration of services spanning
across different administrative boundaries, while Aneka focuses on
a single administrative domain with extra resources provisioned
from other sources such as public Clouds.

Ibis [11] is both a programming system and a deployment
system for distributed applications. It is composed of a set
of APIs allowing users to express applications with different
abstractions, such as MPI, master-worker, and workflow. For
what concerns the deployment system, Ibis leverages the Grid
Application Toolkit [12], which constitutes a uniform interface to
several Grid middleware implementations. Aneka supports not
only Grids, but also Clouds to supply computing resources for
applications. Moreover, Aneka also supports different operating
systems and both physical and virtual machines as compute
resources, and it is able to efficiently leverage resources from
various sources including Spot Instances.

Regarding the problem of using Spot Instances for execution
of applications in the Cloud, Yi et al. [13] propose and compare
different checkpointing strategies. In our approach, we apply high
bids and hybrid resources rather than checkpointing strategies.
Thus, even in case of termination of Spot Instances, tasks running in
local resources will complete, and such resources are kept available
for running other jobs. Chohan et al. [14] present an analysis on
utilization of Spot Instances to speed up execution of MapReduce
applications. Such a work focuses on defining costs and benefits of
the subject, and no provisioning algorithm to explore such capacity
is supplied, while our work presents a provisioning algorithm

R.N. Calheiros et al. / Future Generation Computer Systems 28 (2012) 861-870 863

for combining Desktop Grids and Spot Instances regardless the
application model.

Finally, Mattess et al. [15] presents a provisioning algorithm
for extending cluster capacity with Spot Instances. The goal of
such algorithm is reducing waiting time of jobs in cluster queues,
where users have reservations that define amount of time required
by the job and number of resources required by the job. Our
approach, on the other hand, is elastic in the sense that amount
of resources allocated to a job can change during its execution if
this is required for meeting application deadline. Moreover, our
provisioning algorithm does not require resources reservation, as
does the described one.

3. Aneka: a cloud application platform

Aneka [3] is a framework for development, deployment, and
management of Cloud applications. It consists of a scalable Cloud
middleware that is deployed on top of heterogeneous computing
resources and an extensible collection of services coordinating the
execution of applications, monitoring the status of the Cloud, and
providing integration with existing Cloud technologies. One of the
key advantages of Aneka is its extensible API for development
of distributed applications, integration of new capabilities into
the Cloud, and support of different types of Clouds: public,
private, and hybrid. These features differentiate Aneka from typical
infrastructure management software and actually characterize it as
a platform for development and deployment of applications.

In this section we illustrate the architecture of Aneka and de-
scribe the fundamental components that constitute the framework
by first looking at the structure of the Aneka container and then
discussing its various services.

3.1. Architecture

Fig. 1 provides an overview of the components of the
framework. The core infrastructure of the system provides a layer
allowing the framework to be deployed over different platforms
and operating systems. The physical and virtual resources
representing the bare metal of the Cloud are managed by the Aneka
container, which abstracts the peculiarities of the underlying
hardware and hosting operating system to provide a homogeneous
runtime environment for applications and services, which are
shared among users from the platform.

The container is installed on each node and constitutes the basic
building block of the middleware. A collection of interconnected
containers forms the Aneka Cloud: a single domain in which
services are made available to users and developers. The container
is also the unit of deployment in Aneka Clouds: the middleware is
able to scale on demand by dynamically provisioning additional
resources and automatically deploying the container on them.
Services are the fundamental abstraction by which the features
available in the container are implemented. The container features
three different classes of services: Fabric Services, Foundation
Services, and Application Services. They respectively take care of
infrastructure management, cloud middleware, and application
management and execution. These services are made available to
developers and administrators by the means of the application
management and development layer, which includes interfaces
and APIs for developing Cloud applications and the management
tools and interfaces for controlling Aneka Clouds.

Aneka implements a service-oriented architecture (SOA) and
services are the fundamental components of an Aneka Cloud.
They operate at container level and provide developers, users, and
administrators with features offered by the framework. Services
also constitute the extension and customization point of Aneka
Clouds: the platform allows the integration of new services or
replacement of the existing ones with a different implementation.
The framework includes the basic services for infrastructure and

node management, application execution, accounting, and system
monitoring.

3.1.1. Infrastructure

The infrastructure of the system is based on the .NET
technology and allows the Aneka container to be portable
over different platforms and operating systems. Any platform
featuring an ECMA-335 (Common Language Infrastructure) [16]
compatible environment can host and run an instance of the
Aneka container, which is implemented by both Microsoft .NET
framework' (for Windows-based systems) and the Mono open
source implementation of the .NET framework? (for Linux-based
systems).

The Common Language Infrastructure (CLI), which is the
specification introduced in the ECMA-335 standard, defines
a common runtime environment and application model for
execution of programs, but does not provide any interface to access
the hardware or to collect performance data from the hosting
operating system. Moreover, each operating system has a different
organization of the file system and stores that information
differently. Aneka’s Platform Abstraction Layer (PAL) addresses
this heterogeneity and provides the container with a uniform
interface for accessing the relevant hardware and operating system
information, thus allowing the rest of the container to run
unmodified on any supported platform. The PAL is a small layer
of software comprising a detection engine which automatically
configures the container at boot time with the platform specific
component to access information about the hosting platform.

Another important function of the PAL is to provide a
platform-independent interface for managing the Aneka Cloud
infrastructure. The Aneka Cloud is characterized by a network of
interacting containers that are deployed on top of both physical
and virtual nodes. Each node contains an Aneka Daemon that is
responsible for managing multiple instances of the container.

The architecture of the system is completed by a repository
server that makes the Aneka codebase available to the other nodes
for updates via different protocols such as HTTP, file share, or
other solutions that can be implemented by the administrator.
Each Aneka Daemon can be contacted with proper credentials
and controlled remotely by means of the management interfaces.
All the nodes are also accessible via a management console from
which it is possible to deploy new instances of the container and
remotely control them through the management API offered by the
PAL.

3.1.2. Middleware

The middleware represents the distributed infrastructure
constituting Aneka Clouds. It provides a collection of services for
interaction with the Cloud. These include monitoring, execution,
management, and all the other functions implemented in the
framework.

The middleware is composed of two major components
representing the building blocks of Aneka Clouds: the container
and the Aneka Daemon. The container represents the unit of
deployment of Aneka Clouds and the runtime environment
for services and applications. The middleware scales elastically
by dynamically adding or removing container instances. The
daemon is a management component controlling the container
instances installed on a single node (physical or virtual). Its
responsibilities are: installing or removing container instances,
managing software updates, and dynamically configuring, starting,

1 http://www.microsoft.com/net/.
2 http://www.mono-project.com.

864 R.N. Calheiros et al. / Future Generation Computer Systems 28 (2012) 861-870

Application Development & Management

Application Services i

Distributed Threads MapReduce

Bag of Tasks

Other models...

Foundation Services |

Resource Reservation

Fabric Services

Billing & Reporting

Licensing & Accounting

Enterprise Desktop Grid Data Centers

TR SO0z
Wam

Clusters

Fig. 1. Aneka framework overview.

and stopping container instances. A standard deployment of
Aneka is characterized by a single daemon on each node and
one or more container instances controlled by the daemon.
Multiple installations of the daemon on a single node is useful
for deployment of isolated Aneka Clouds on the same physical
infrastructure. This is generally not required because Aneka
provides ways for partitioning the containers within a Cloud by
putting them into separate groups.

The Aneka container performs service management tasks, while
all the other functions are implemented by using services. Services
are self-contained components used to develop a feature that is
accessible through the messaging channel made available by the
container. There are three major classes of services, and they are:

Fabric services: Provide access to the resource provision-
ing subsystem and to the hardware of
the hosting machine. Services in this class
include resource provisioning service, hard-
ware profiling services, and reservation ser-
vice. Reservation is available for users that,
for some reason, want to postpone execution
of their jobs.

Foundation services: Constitute the pillars of the Aneka middle-
ware and are mostly concerned with provid-
ing runtime support for execution of services
and applications, providing services such as
directory and membership, resource reser-
vation, monitoring, storage management, li-
censing, accounting, reporting, and billing.

Application services: Consist of services that are directly involved
in the execution of distributed applications.
Services in this class include scheduling
service and execution service.

Finally a collection of transversal services operate at all the
levels of the container and provide persistence and security for the
runtime environment. Persistence provides support for recording
the status of the Cloud. The persistence infrastructure is composed
of a collection of storage facilities that can be configured separately
for tuning the performance and the quality of service of the Cloud.
Aneka provides two different implementations for each storage:
in memory and relational database. The former is used for testing
environments and provides better performance in terms of speed.
The latter provides a more solid and reliable support and can be
used over different database management systems.

The Aneka Cloud is also resilient to failure by providing
a multiple-master failover mechanism. This allows the master
container to be replicated on multiple nodes in the network,
ensuring that an active master is available at all times for
monitoring and managing the execution of applications on the
Cloud. The failover mechanism is implemented using an election
algorithm.

The security system of Aneka is composed of a central security
service that manages users, groups, and resources available in the
Cloud and a pair of providers—authentication and authorization
providers—that operate at the container level to identify the
user and authorize the processing of each message. Authorization
and authentication providers can be dynamically configured, thus
providing a more flexible infrastructure. The containers in a Cloud
also authenticate messages exchanged between each other using a
shared secret key that is unique to the Aneka cloud.

Billing is calculated considering the time that a task occupies a
container. Each container (running on a machine) has an associated
cost. The bill then is the sum of the cost of the task in the container
for all tasks run by the user. Each application in Aneka is associated
to a user, thus Aneka tracks usage of resources per user. Moreover,

R.N. Calheiros et al. / Future Generation Computer Systems 28 (2012) 861-870 865

the scheduling algorithm is able to specifically provision resources
for a given application, and then bill the user that owns the
application.

3.1.3. Application development and management

The services of the middleware are accessible through a
set of tools and interfaces that together define the Software
Development Kit (SDK) and the Management Kit. The SDK
represents the collection of end user abstractions and APIs for
definition of applications by leveraging the existing programming
models or for implementation of new models and services. The
Management Kit contains a collection of tools for management,
monitoring, and administration of Aneka Clouds.

All the management functions of the Aneka Cloud are made
accessible through the Management Studio, which is a compre-
hensive graphical environment where administrators have a global
view of the Cloud. Since Clouds are constituted of hundreds or even
thousands of machines, both physical and virtual, it is not possible
to reach and set up each single machine by hand. The Management
Studio provides remote access to each node belonging to the Cloud
and advanced interfaces for deployment of the container and cus-
tomization of its behavior.

3.2. Programming models

One of the original aspects of Aneka is its ability to provide
different abstractions for programming distributed applications.
These abstractions are translated into applications and executed
in the Cloud by means of programming models. A programming
model comprises both the end-user abstractions used to define
the logic of applications and the runtime support in terms of
services and client components required to execute the resulting
applications. All the programming models supported by Aneka
base their design on a common root that is the Aneka Application
Model. The Application Model defines the common properties of a
distributed application despite the specific programming model it
belongs to, and provides an extensible object model from which
developers can create new programming models.

Fundamental to the model is the concept of application, which
represents the context in which a self-contained interaction
between the user and the middleware happens.

By using the concept of application, different paradigms can be
expressed. For example in the case of bag of tasks and workflow
applications, tasks are directly created and submitted by the
user; in the case of MapReduce or Parameter Sweep applications,
the units of work are dynamically generated by the middleware
according to the user input and the implementation logic of the
model. These units generally are the containers of the executable
code, have a life cycle determined by states whose transitions are
determined by the middleware, and require to be unequivocally
identified.

The application and the application manager instances con-
stitute the client components that manage the execution of dis-
tributed applications for a specific programming model. The other
components reside in the middleware and are implemented as
services. In general, two major operations are required to pro-
vide execution support for a specific application: scheduling and
execution. As a result, all supported programming models fea-
ture a scheduling and an execution service. In general, only one
scheduling service is required while there are multiple execution
services for scaling application execution. For what concerns the
management of files, each programming model relies on the stor-
age service that provides a staging facility for applications. Fig. 2
provides an overview of the execution of distributed applications
in Aneka.

Currently, Aneka supports four different programming models,
which are briefly described here. A deeper description of each
model was presented in our previous work [3] and is out of the
scope of this paper.

Task model. The Task Programming Model provides
developers with the ability of expressing
bag of tasks and workflow applications.

Thread model. This model allows quickly porting of
applications composed of independent
threads (i.e, threads that do not share
data) into a distributed environment.
Developers familiar with the threading
API exposed by the .NET framework
or Java can easily take advantage of
the set of compute resources available
with Aneka in order to improve the
performance of their applications.

MapReduce model. This model is an implementation of
Google’s MapReduce [17] that leverages
Aneka for processing or generating large
data sets.

Parameter sweep model. This model represent applications that
iterate the execution of the same task
over different value ranges from a given
parameter set.

These programming models, together with the support for
hybrid Desktop Grids and Clouds in Aneka, provide infrastructure
users with a rich set of options related to both type of applications
that can be developed or ported to run in Aneka and type of
resources that can be used to support application execution. In the
next section, we describe this process in details.

4. Desktop Grids and Aneka

In this section, we discuss Desktop Grid support in Aneka and
the role of different Aneka services on such a support.

4.1. General overview

Aneka is a portable middleware that can be deployed over
different operating systems and hardware, including both physical
and virtual. The core functionalities that support this feature
reside in the Platform Abstraction Layer, which provides a
uniform interface for management and configuration of nodes
and the containers instances deployed on them. Together with
basic management operations of the PAL, the dynamic resource
provisioning module constitute the basic services used to control
the infrastructure of Aneka Clouds.

The typical deployment scenario of Aneka consists of one
master node that contains all the management services and
represents the access point to the Cloud and one or more worker
nodes that share the workload of the system. Worker nodes may
include resources from several sources, including clusters, Grids,
and private and public Clouds [6]. However, the most common
type of resource to be included in an Aneka cloud is desktop
machines from the local Aneka site, whose idle cycles are explored
opportunistically by Aneka. Alternatively, it is also possible to
add dedicated machines to Aneka, so they will be used whenever
resources are required, even in the presence of local users.

Inclusion of new desktop machines in the cloud happens via
a management interface. When the new machine is added to the
Aneka cloud, required files are copied to the machine, so it is
able to communicate with the master node and join the cloud.
The requirements of a machine to join Aneka cloud are (i) being
accessible via a network and (ii) having a configuration that allows

866 R.N. Calheiros et al. / Future Generation Computer Systems 28 (2012) 861-870

infrastructure

scheduling
execution
coordination

end users

abstractions

units of execution

Scheduling
services

Fig. 2. Application execution scenario.

remote access and execution of the Aneka container. For the latter
to be possible, the resource must have the runtime environment
required by the Container (e.g., .NET, Mono).

Besides the support from PAL, other Aneka services have also
role in the support of Desktop Grids. In the following sections we
discuss the role of each service separately.

4.2. Security and Desktop Grids

Desktop Grids harness commodity machines to create a
distributed infrastructure. Differently from a cluster where nodes
are dedicated to the Grid and there is a stricter access control,
desktop machines are exposed to more security threats, being
used by several different users, who in many cases have
complete control of the machine. Therefore, it is important to
enforce the appropriate security measures to guarantee privacy
and confidentiality. Aneka provides a pluggable security model
that can be configured with different implementations. Each
communication to and from instances of the Aneka Container is
secured. Moreover, the hosting environment is protected by a
sandbox that isolates effects of execution of Aneka tasks in the
system. Finally, user data and execution files are deleted after job
execution to avoid unauthorized access.

4.3. Reservation and Desktop Grids

Resources reservation is supported by two components:
Reservation Service and Allocation Manager. The Reservation
Service is a central service that keeps track of the allocation
map of all the nodes constituting the Aneka Cloud, while the
Allocation Manager provides a view of the allocation map of the
local Container. Reserved nodes only accept jobs that belong to
the reservation request that is currently active. In case there is no
active reservation on the node, any job that matches the security
requirements set by Aneka Cloud is executed. The Allocation
Manager is responsible for keeping track of the reserved time
frames in the local node and for checking, before the start of a job,
whether it is admissible or not.

Dynamic Provisioning is a useful complement to the reservation
infrastructure since it contributes to provide a better reliability
of the system. In case of reserved nodes are unavailable when
their reservation should start, and there is no other local resources

to replace them, the reservation infrastructure leverages dynamic
provisioning, which leases resources from public Clouds, to
guarantee the missing computing capacity. This is an important
aspect in case of Desktop Grids where nodes are typically more
volatile than in other contexts.

4.4. Accounting and Desktop Grids

Aneka prices the execution of tasks according to the cost of
the machines running the tasks. However, there is no charge
for a task execution if it does not complete because of resource
unavailability. For example, if an Aneka node leaves Desktop
Grid in the middle of the execution of a task, the corresponding
execution time is not charged from the user. Instead, the condition
is detected by Aneka and the task is automatically rescheduled.

Quality of Service in terms of deadline-based application
execution is another issue of concern in Desktop Grids. As
discussed next, dynamic provisioning and scheduling services
coordinate their efforts in order to meet the deadline with
the given budget assigned to the applications. The current
implementation of such algorithms still have limitations on
meeting QoS in case of sudden and massive shortage of resources
when applications are very close to the deadline. Task replication
based on historical execution pattern and prediction of failures
and reaction before the failure are two approaches currently under
investigation for overcoming the aforementioned limitations.

4.5. Dynamic provisioning and Desktop Grids

Desktop machines, either dedicated or accessed opportunisti-
cally, are managed by the scheduler service. When requests arrive,
this service allocates resources to the requests, considering an ini-
tial user estimation of task duration. If available resources are not
enough to serve requests on time, the scheduler requests the pro-
visioning service to provision dynamic resources to serve jobs.

Therefore, capacity of local Desktop Grid is enhanced with
public Cloud resources by the Provisioning Service. This service,
via its Resource Pool Manager, allocates resources from public
cloud providers to complement local resources. Different public
Cloud providers, and hence different Resource Pool Managers, are
supported by Aneka. System administrators define which Resource
Pool Managers can be used and the preferred order of utilization

R.N. Calheiros et al. / Future Generation Computer Systems 28 (2012) 861-870 867

via explicit configuration. Administrators can also define the
allocation policy to be adopted for resource provisioning. For
example, a straight forward strategy for resource allocation on
public Clouds provided by Aneka is to pick the first option set by
the administrator; if these resources are not enough, or in case
of unavailability of the provider, the next provider in the list is
selected and so on. A more interesting resource selection strategy
is to use a cost-based approach to resource allocation, where the
cheapest provider is selected first.

Access to different providers is made possible via the imple-
mentation of different Resource Pools. A Resource Pool implements
the particular operations that are required for allocating, submit-
ting jobs, and releasing resources from the provider it represents.

Resources allocated from the Cloud are kept in the Aneka
pool until the end of the allocation time window where it is no
longer required. For example, in the case of Amazon EC2 [18],
where resources are charged hourly, EC2 instances are kept for the
whole 60 min period even if they are no longer required. Because
allocation time windows is different for different providers, this
feature is also implemented by the Resource Pool.

4.6. Provisioning of resources from Desktop Grids and spot instances
in Aneka

For the intent of supporting execution of applications in hybrid
Desktop Grids and Clouds, a new provisioning algorithm has been
developed in Aneka that explores Spot Instances. Spot Instances
consist of virtual machines (VMs) for which users produce a bid
price that represent the maximum value they are willing to pay for
using each VM. Amazon then periodically updates resource value
(spot price) and, whenever the spot price is equal or smaller than
the bid price, corresponding VMs are executed. When the spot
price is bigger than the bid price, VMs are terminated. Users are
charged hourly at the spot price, and fractions of hours are ignored
in case of preemption. Therefore, if a VM is preempted after 1.5 h,
the user is charged for one hour of utilization. However, if the user
terminates a VMs after 1.5 h, he or she is charged for two hours
of utilization. Spot Instances represent a cheaper type of Cloud
resource that can be valuable to speed up applications running in
the local Desktop Grid.

Algorithm 1 describes Aneka’s Spot Instance-Aware Provision-
ing Algorithm.? The algorithm is executed when any of the follow-
ing conditions is observed: (i) a new job is received by the system
(ii) a task from a job is queued, and (iii) execution of a task com-
pletes.

Basically, the algorithm checks if currently available resources
are enough for completing jobs within their deadlines (Line 7). The
calculation considers only tasks in the waiting queue; therefore,
during estimation of remaining execution time (Lines 6 and 22) the
algorithm considers that current running tasks have to complete
before the waiting ones are scheduled and executed.

One of the key differences between the proposed provisioning
algorithm and the previous one [6] is that the former considers the
deployment time in public Clouds during calculation of number of
extra required resources (Lines 18-16): values « and 8 represent,
respectively, the ratio between remaining time and task runtime
and deployment time and task runtime. If « < g, it is possible
to complete the job before its deadline. Otherwise, new VMs will
not become available before the deadline, and number of extra
resources is calculated based on availability of local resources
and estimated utilization of external resources. In either case, the
number of external resources to be provisioned is limited to the
number of waiting tasks (Line 16).

3 For the sake of simplicity, we do not present in the algorithm listing activities
related to management of requests and check for failures in the requests processing
that are performed by Aneka.

Algorithm 1: Spot Instance-Aware Provisioning Algorithm.

1 foreach job with QoS contraints do

executionTime < updated estimate of task execution
time;

timeLeft < time before job deadline;

resources <— available resources for the application;
pendingTasks <— number of tasks in the queue;

requiredTime <— (frestgf";ieJ + 1) x executionTime;

if requiredTime > timelLeft then
timeLeft .
o < LedxeclutionTig'eJ'
eploymentTime | .
ﬂ < I— executionTime J'
10 totalResources < resources + requestedResources;

1 if« — 8 > 0 then

// deadline can be met
|— (1—a) x totalResources+pendingTasks -| .
a—p ’

N

© e NS AW

12 extraResources <—

13 else

14 extraResources <«

pendingTasks — (8 + 1) x totalResources;
15 end

16 extraResources <— min(extraResources, pendingTasks);

17 if extraResources > 0 then

18 request extraResources spot instances at
on-demand price;

19 requestedResources <
requestedResources + extraResources;

20 end

21 else

// check if one less resource enables

deadline to be achieved
tasks

22 requiredTime <— ([>"—1+ 1) x executionTime;
23 if requiredTime < timeLeft then

24 \ return one resource to the Resource Pool Manager;
25 end

26 end

27 end

The pricing strategy used for provisioning (Lines 17-19) of Spot
Instances is utilization of on-demand price for the equivalent type
of instance. This strategy makes the probability of VM preemption
small, especially if external resources are required for a small
number of hours [19], at the same time it allows smaller prices
than on demand requests. If allocation of spot instances fails
(for example, if spot price is higher than the on-demand price),
resources can be sought in the on-demand market or in other
public Cloud providers, which are controlled by other Aneka
Resource Pools.

Finally, each time a task completes the algorithm also checks
if the job is able to complete within its deadline with one less
resource (Lines 22-25). If so, one resource is returned to the
Resource Pool Manager, which can decide between releasing the
resource (if the one-hour billing period is about to expire) or
allocating it to another running job.

5. Performance evaluation

The scenario in which the tests were carried out is a Desktop
Grid constituted of eight machines (one master and seven slaves)
that were configured to run Bag of Tasks applications with
Aneka. This infrastructure is dynamically grown with resources
from public Clouds in order to meet jobs’ QoS requirements.
We evaluated the performance of the original and enhanced
scheduling and provisioning services to address peak loads and
accomplish application execution within the deadline.

868 R.N. Calheiros et al. / Future Generation Computer Systems 28 (2012) 861-870

Table 1
Experimental set up.

Desktop grid nodes 7

Desktop grid nodes operating system Windows server
Amazon instance type m1.small
Amazon instance type operating system Fedora Linux
Tasks per job 50

Task execution time 10 min

Public Cloud resources are deployed on Amazon EC2 (USA East
Coast data center) using m1.small instances: they have a single
core, a computing power of 1 EC2 unit, which is equivalent to
1.0-1.2 GHz CPU 2007 Opteron or 2007 Xeon Processor,* and 1.7
GB of memory, at the cost of US$0.085 per instance per hour.
The operating system of Desktop Grid nodes is Windows Server
while operating system of public Cloud resources is Fedora Linux.
The default resource provisioning algorithm of Aneka uses on-
demand resources, whereas the new resource provisioning uses
Spot Instances. The estimated start up time of new VMs used
by the Spot Instance-Aware Provisioning Algorithm for making
provisioning decisions is 4 min, even though even longer start up
times were observed during the experiments.

The test application is a Bag of Tasks application containing 50
tasks. The task selected for the test is a sleep task that occupies the
computing resource for 10 min. The reason for this choice is to have
an homogeneous performance across the entire set of slave nodes
and to consider indifferently virtual and physical slave nodes in our
experiments. Experimental set up is summarized in Table 1.

Fig. 3 and Table 2 presents results of job execution with
different deadlines. The total execution time of the workload in
a single resource is 500 min. Considering only the seven Desktop
Grid nodes available in the experiments, the workload requires
80 min to complete without any overhead incurred by the system.
Therefore, provisioning of public Cloud resources is necessary in all
the experiments.

Fig. 3(a) shows that the Spot Instance-Aware Provisioning
Algorithm was able to meet all the deadlines. The bigger execution
time of the Spot Instance-Aware Provisioning Algorithm is caused
by a more conservative budget expenditure for completing the
application: the algorithm allocates the minimum amount of
resources that enables the deadline to be met. The result is that
execution times for all cases are always closer to the deadline,
while the default algorithm allocates more resources and meets
relaxed deadlines by a larger margin.

The result of the conservative approach for budget by our
new algorithm can be seen in Fig. 3(b): in general, our new
algorithm provisions less virtual machines for the same scenario.
The exception is the strictest deadline: in this case, Spot Instance-
Aware Provisioning Algorithm allocates one extra resource than
the default algorithm. This is because SPOT considers the delay
in instantiation (which was set to 4 min) when deciding number
of resources. In some of the observed cases, the start up time of
the Spot request was longer than six minutes, against two minutes
for on-demand requests. This would made the deadline be missed
by a larger margin if Spot Instance-Aware Provisioning Algorithm
provisioned the same number of machines as the default approach.

The impact in the budget of the decision of using Spot Instances
can be seen in Fig. 3(c). Because in most scenarios SPOT required
less virtual machines than DEFAULT, it would lead to savings in
budget in any case. However, because Spot Instances are, during
most part of time, significantly cheaper than on demand instances,
our new algorithm enabled savings in investment for completing
execution within the deadline of up to 85.7%. In fact, during the

4 s by the time this article was written, according to
http://aws.amazon.com/ec2/instance-types/.

a 8o
. 70
c
£ 60
QE) 50
= 4
= 0 B DEFAULT
£ 30 B sPOT
o 20
Q
i 10
0
80 70 60 50 40
Deadline (min)
b o9
0.8
0.7
—~ 0.6
@
» 05
=)
— 04 B DEFAULT
[%]
o o]
8 03 SPOT
0.2
0.1
0
80 70 60 50 40
Deadline (min)
C 12
10
1%}
(o]
2 8
©
2 6
= B DEFAULT
S 4 B sPOT
©
g2
0
80 70 60 50 40

Deadline (min)

Fig. 3. Experimental results for the two provisioning strategies: the default
provisioning algorithm (DEFAULT in the graphs) and Spot Instance-Aware (SPOT in
the graphs), considering different application deadlines. (a) Execution time (b) Cost
(c) Number of Amazon instances deployed.

experiments the spot price for small instances in the US-East
data center varied between US$0.029 and US$0.03 per instance
per hour. Therefore, we conclude that our new algorithm is able
to meet even strict application deadlines with minimal budget
expenditure by taking advantage of Spot Instances.

6. Conclusions and future directions

In this paper we presented how Aneka, a framework for devel-
oping, managing, and deploying Cloud computing applications, can
be used to extend capacity of Desktop Grids with Cloud computing
resources hired from Amazon EC2 Spot Instances.

The middleware is based on an extensible service-oriented
architecture and the core functionalities of the system are
exposed by means of the Aneka container, which is also
the basic building block of the Cloud. Aneka Clouds scale
elastically and on demand by integrating or removing container
instances provisioned from Infrastructure-as-a-Service providers.
The container is a portable software component hosting different
classes of services that coordinate their activity in order to build
the required context for applications execution. Fabric services
provide an interface with the physical and virtual infrastructure
of the middleware. Foundation services provide support for
applications such as storage, reservation, accounting, monitoring,
and reporting. Application services are directly involved with the
execution of applications and provide the runtime support for the
different programming models supported by Aneka.

A programming model represents a specific way of expressing
distributed applications. It consists of a set of abstractions used by
developers and the corresponding runtime support allowing these

R.N. Calheiros et al. / Future Generation Computer Systems 28 (2012) 861-870

Table 2

869

Experimental results for the two provisioning strategies: default provisioning algorithm (DEFAULT in the table) and Spot Instance-Aware (SPOT in the table), considering

different application deadlines.

Deadline (min) Amazon instances Execution time (min) Cost (US$)

DEFAULT SPOT DEFAULT SPOT DEFAULT SPOT
80 5 1 50 70 0.43 0.06
70 6 2 42 60 0.51 0.12
60 7 5 42 56 0.60 0.15
50 8 5 40 50 0.68 0.15
40 9 10 40 34 0.77 0.29

abstractions to leverage Aneka for their execution. The framework
provides an extensible application model that constitutes the
base on which all the supported programming models are
implemented. Currently, Aneka provides support for bag of
tasks, distributed threads, parameter sweep, and MapReduce
applications. The system can be extended with new models by
either leveraging the implementation of the existing ones or by
extending the application model directly.

Together, these services allow Aneka to offer an environment
that goes beyond Desktop Grid systems capacities by allowing
provisioning of resources from public Clouds to complement
opportunistic resources, so the system is able to meet deadlines
of applications.

The infrastructure for dynamic provisioning, together with the
ability of managing a large number of resources for application
execution, was validated with experiments that show that Aneka is
able to meet even strict application deadlines with minimal budget
expenditure by taking advantage of Spot Instances, which are a
cheaper type of Cloud resource that may be preempted in favor of
more profitable requests to the Cloud provider.

As future work, we plan to develop new provisioning policies
that can take advantage of more information that can be provided
by the scheduling service. For example, if the provisioning is aware
of the amount of time in which external resources are required, and
also have more information about current and predicted utilization
of local infrastructures, it can decide to deploy resources from
the resource pool whose resources have the optimal cost in the
envisioned situation. This will drive for further reduction in budget
expenditure for execution of applications in hybrid Clouds, what
will further motivate adoption of hybrid Clouds as a platform for
execution of applications.

A trial version of the software is available for download at
http://www.manjrasoft.com.

Acknowledgment

The authors would like to thank Xingchen Chu for his
contribution on the research and development of Aneka, which
motivated the work presented in this paper.

References

[1] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and
emerging IT platforms: vision, hype, and reality for delivering IT services as
the 5th utility, Future Generation Computer Systems 25 (6) (2009) 599-616.

[2] D. Kondo, A. Chien, H. Casanova, Scheduling task parallel applications for
rapid turnaround on enterprise desktop Grids, Journal of Grid Computing 5
(4) (2007) 379-405.

[3] C.Vecchiola, X. Chu, R. Buyya, Aneka: a software platform for .NET-based cloud
computing, in: W. Gentzsch, L. Grandinetti, G. Joubert (Eds.), High Speed and
Large Scale Scientific Computing, I0S, 2009, pp. 267-295.

[4] D.HJ. Epema, M. Livny, R. van Dantzig, X. Evers, J. Pruyne, A worldwide
flock of Condors: load sharing among workstation clusters, Future Generation
Computer Systems 12 (1) (1996) 53-65.

[5] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel, R. Quilici,
Programming, composing, deploying for the Grid, in: J.C. Cunha, O.F. Rana
(Eds.), Grid Computing: Software Environment and Tools, Springer-Verlag,
2006, pp. 205-229.

[6] C. Vecchiola, RN. Calheiros, D. Karunamoorthya, R. Buyya, Deadline-
driven provisioning of resources for scientific applications in hy-
brid clouds with Aneka, Future Generation Computer Systems (2011)
doi:10.1016/j.future.2011.05.008.

[7] F. Cappello, S. Djilali, G. Fedak, T. Hérault, F. Magniette, V. Néri, O. Lodygensky,
Computing on large-scale distributed systems: XtremWeb architecture,
programming models security, tests and convergence with Grid, Future
Generation Computer Systems 21 (3) (2005) 417-437.

[8] D.P. Anderson, BOINC: a system for public-resource computing and storage,
in: Proceedings of the 5th IEEE/ACM International Workshop on Grid
Computing, IEEE Computer Society, 2004, pp. 4-10.

[9] L Raicu, Y. Zhao, C. Dumitrescu, I. Foster, M. Wilde, Falkon: a Fast and Light-
weight tasK executiON framework, in: Proceedings of the 2007 ACM/IEEE
Conference on Supercomputing, ACM, 2007.

[10] D. Kurzyniec, T. Wrzosek, D. Drzewiecki, V.S. Sunderam, Towards self-
organizing distributed computing frameworks: the H20 approach, Parallel
Processing Letters 13 (2) (2003) 273-290.

[11] H.E. Bal, J. Maassen, R.V. van Nieuwpoort, N. Drost, R. Kemp, N. Palmer,

G. Wrzesinska, T. Kielmann, F. Seinstra, C. Jacobs, Real-world distributed

computing with Ibis, Computer 43 (8) (2010) 54-62.

G. Allen, K. Davis, T. Dramlitsch, T. Goodale, 1. Kelley, G. Lanfermann, J.

Novotny, T. Radke, K. Rasul, M. Russell, E. Seidel, O. Wehrens, The GridLab Grid

application toolkit, in: Proceedings of the 11th International Symposium on

High-Performance Distributed Computing, IEEE Computer Society, 2002.

S. Yi, D. Kondo, A. Andrzejak, Reducing costs of spot instances via

checkpointing in the Amazon Elastic Compute Cloud, in: Proceedings of the 3rd

International Conference on Cloud Computing, IEEE Computer Society, 2010,

pp. 236-243.

N. Chohan, C. Castillo, M. Spreitzer, M. Steinder, A. Tantawi, C. Krintz, See spot

run: using spot instances for mapreduce workflows, in: Proceedings of the 2nd

USENIX Conference on Hot Topics in Cloud Computing, USENIX, 2010.

M. Mattess, C. Vecchiola, R. Buyya, Managing peak loads by leasing

cloud infrastructure services from a spot market, in: Proceedings of

the 12th International Conference on High Performance Computing and

Communications, [EEE Computer Society, 2010, pp. 180-188.

[16] J. Miller, S. Ragsdale, The Common Language Infrastructure Annotated
Standard, Addison Wesley, 2004.

[17] J.Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters,
Communications of ACM 51 (1) (2008) 107-113.

[18]]. Varia, Best practices in architecting cloud applications in the AWS Cloud,
in: R. Buyya, J. Broberg, A. Goscinski (Eds.), Cloud Computing: Principles and
Paradigms, Wiley Press, 2011, pp. 459-490.

[19] B.Javadi, R. Buyya, Comprehensive statistical analysis and modeling of spot
instances in public cloud environments, Technical Report CLOUDS-TR-2011-
1, The University of Melbourne, 2011.

[12]

[13]

(14]

[15]

Rodrigo N. Calheiros is a Research Fellow in the
Cloud Computing and Distributed Systems Laboratory
(CLOUDS Lab) in the Department of Computer Science and
Software Engineering, University of Melbourne, Australia.
He completed his PhD degree in Computer Science in
2010 at PUCRS, Brazil, and his MSc degree in 2006 at
the same University. His research interests include Cloud
Computing and simulation and emulation of distributed
systems, with emphasis in Grids and Clouds.

Christian Vecchiola is a Research Fellow at the Cloud
Computing and Distributed Systems Laboratory (CLOUDS
Lab) in the Department of Computer Science and Software
Engineering, at The University of Melbourne, Australia. His
primary research interests include: Grid/Cloud Comput-
ing, Distributed Evolutionary Computation, and Software
Engineering. Since he joined the CLOUDS Lab he focused
his research activities and development efforts on two ma-
jor topics: middleware support for Cloud/Grid Comput-
ing and distributed support for evolutionary algorithms.
"= Christian completed his Ph.D. in 2007 at the University of
Genova, Italy with a thesis on providing support for evolvable Software Systems
by using Agent Oriented Software Engineering. During the Ph.D. he worked under
the supervision of Prof. Antonio Boccalatte in the Department of Communication
Computer and System Sciences and has have been actively involved in the design
and the development of the AgentService that is a software framework for develop-
ing distributed systems based on Agent Technology. Dr. Vecchiola also investigated

870 R.N. Calheiros et al. / Future Generation Computer Systems 28 (2012) 861-870

the advantages of providing support for agent based development at a program-
ming language level by extending the object oriented language with abstractions
for representing the key elements of the agent computing model. This gave him the
opportunity to cultivate another research interest that is represented by Program-
ming Languages and Compiler Technology.

Dileban Karunamoorthy is a Research Fellow at the Cloud
Computing and Distributed Systems Laboratory (CLOUDS
Lab) in the Department of Computer Science and Software
Engineering, at the University of Melbourne, Australia,
where he contributes to the ongoing research and
development of Aneka. He designed and developed several
key features in Aneka including master failover, licensing
and discovery services, security, management, monitoring
and reporting. Mr. Karunamoorthy has a MSc. degree in
Distributed Computing from the University of Melbourne.
His primary area of interest lies in distributed computing
with specific interests in the algorithms and principles for scalable, fault-tolerant,
real-time and high-performance systems, covering a broad range of application
areas such as cloud and Grid-Computing, high-performance computing, distributed
real-time and embedded systems, P2P, and mobile and ad-hoc computing.

Rajkumar Buyya is Professor of Computer Science and
Software Engineering and Director of the Cloud Computing
and Distributed Systems (CLOUDS) Laboratory at the
University of Melbourne, Australia. He is also serving as
the founding CEO of Manjrasoft., a spin-off company of
the University, commercializing its innovations in Cloud
Computing. He has authored 350 publications and four
text books. He also edited several books including “Cloud
Computing: Principles and Paradigms” recently published
by Wiley Press, USA. He is one of the highly cited authors
in computer science and software engineering worldwide
(h-index=53, g-index=114, 15000+ citations). Software technologies for Grid and
Cloud computing developed under Dr. Buyya’s leadership have gained rapid
acceptance and are in use at several academic institutions and commercial
enterprises in 40 countries around the world. Dr. Buyya has led the establishment
and development of key community activities, including serving as foundation
Chair of the IEEE Technical Committee on Scalable Computing and five [EEE/ACM
conferences. These contributions and international research leadership of Dr. Buyya
are recognized through the award of “2009 IEEE Medal for Excellence in Scalable
Computing” from the IEEE Computer Society, USA. Manjrasoft’s Aneka Cloud
technology developed under his leadership has received “2010 Asia Pacific Frost
& Sullivan New Product Innovation Award”.

