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Software as a Service (SaaS) provides access to applications to end users over the Internet
without upfront investment in infrastructure and software. To serve their customers,
SaaS providers utilise resources of internal data centres or rent resources from a public
Infrastructure as a Service (IaaS) provider. In-house hosting can increase administration and
maintenance costs whereas renting from an IaaS provider can impact the service quality
due to its variable performance. To overcome these limitations, we propose innovative
admission control and scheduling algorithms for SaaS providers to effectively utilise public
Cloud resources to maximize profit by minimizing cost and improving customer satisfaction
level. Furthermore, we conduct an extensive evaluation study to analyse which solution
suits best in which scenario to maximize SaaS provider’s profit. Simulation results show
that our proposed algorithms provide substantial improvement (up to 40% cost saving)
over reference ones across all ranges of variation in QoS parameters.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Cloud computing has emerged as a new paradigm for delivery of applications, platforms, or computing resources (pro-
cessing power/bandwidth/storage) to customers in a “pay-as-you-go-model”. The Cloud model is cost-effective because
customers pay for their actual usage without upfront costs, and scalable because it can be used more or less depending
on the customers’ needs. Due to its advantages, Cloud has been increasingly adopted in many areas, such as banking,
e-commerce, retail industry, and academy [8,9,11]. Considering the best known Cloud service providers, such as Sale-
force.com [39], Microsoft [33], and Amazon [29], Cloud services can be categorized as: application (Software as a Service –
SaaS), platform (Platform as a Service – PaaS) and hardware resource (Infrastructure as a Service – IaaS).

In this paper, we focus on the SaaS layer, which allows customers to access applications over the Internet without
software related cost and effort (such as software licensing and upgrade). The general objective of SaaS providers is to
minimize cost and maximize customer satisfaction level (CSL). The cost includes the infrastructure cost, administration
operation cost and penalty cost caused by SLA violations. CSL depends on to what degree SLA is satisfied. In general,
SaaS providers utilize internal resources of its data centres or rent resources from a specific IaaS provider. For example,
Saleforce.com [39] hosts resources but Animoto [20] rents resources from Amazon EC2 [29]. In-house hosting can generate
administration and maintenance cost while renting resources from a single IaaS provider can impact the service quality
offered to SaaS customers due to the variable performance [40].

To overcome the above limitations, multiple IaaS providers and admission control are considered in this paper. Procuring
from multiple IaaS providers brings huge amount of resources, various price schemas, and flexible resource performance
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Fig. 1. A high level system model for application service scalability using multiple IaaS providers in Cloud.

to satisfy Service Level Objectives, which are items specified in Service Level Agreement (SLA). Admission control has been
used as a general mechanism to avoid overloading of resources and SLA satisfaction [8]. However, current SaaS providers
do not have admission control and how they conduct scheduling is not publicly known. Therefore, the following questions
need to be answered to allow efficient use of resources in the context of multiple IaaS providers, where resources can be
dynamically expanded and contracted on demand:

• Can a new request be accepted without impacting accepted requests?
• How to map various user requests with different QoS parameters to VMs?
• What available resource should the request be assigned to? Or should a new VM be initiated to support the new

request?

This paper provides solutions to the above questions by proposing an innovative cost-effective admission control and
scheduling algorithms to maximize the SaaS provider’s profit. Our proposed solutions are able to maximize the number of
accepted users through the efficient placement of request on VMs leased from multiple IaaS providers. We take into account
various customer’s QoS requirements and infrastructure heterogeneity. The key contributions of this paper are twofold: 1) we
proposed system and mathematical models for SaaS providers to satisfy customers. 2) we proposed three innovative admis-
sion control and scheduling algorithms for profit maximization by minimizing cost and maximizing customer satisfaction
level.

The rest of this paper is organized as follows. In Section 2, we present system and mathematical models. As part of
the system model, we design two layers of SLAs, one between users and SaaS providers and another between SaaS and
IaaS providers. In Section 3, we propose three admission control and scheduling algorithms. In Section 4, we show the
effectiveness of the proposed algorithms in meeting SLA objectives and the algorithms’ capacity in meeting SLAs with users
even in the presence of SLA violations from IaaS providers. Simulation results show that proposed algorithms improve the
profit (up to 40% improvement) compared to reference algorithms by varying all range of QoS parameters. Prior related
works are compared in Section 5. Finally, in Section 6, we conclude the paper by summarizing the comparison results and
future work.

2. System model

In this section, we introduce a model of SaaS provider, which consists of actors and ‘admission control and scheduling’
system (as depicted in Fig. 1). The actors are users, SaaS providers, and IaaS providers. The system consists of application
layer and platform layer functions. Users request the software from a SaaS provider by submitting their QoS requirements.
The platform layer uses admission control to interpret and analyse the user’s QoS parameters and decides whether to accept
or reject the request based on the capability, availability and price of VMs. Then, the scheduling component is responsible
for allocating resources based on admission control decision. Furthermore, in this section we design two SLA layers with
both users and resource providers, which are SLA(U) and SLA(R) respectively.
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2.1. Actors

The participating actors involved in the process are discussed below along with their objectives and constraints:

2.1.1. User
On users’ side, a request for application is sent to a SaaS provider’s application layer with QoS constraints, such as,

deadline, budget and penalty rate. Then, the platform layer utilizes the ‘admission control and scheduling’ algorithms to
admit or reject this request. If the request can be accepted, a formal agreement (SLA) is signed between both parties to
guarantee the QoS requirements such as response time. SLA with Users – SLA(U) includes the following properties:

• Deadline: Maximum time user would like to wait for the result.
• Budget: How much user is willing to pay for the requested services.
• Penalty Rate Ratio: A ratio for consumers’ compensation if the SaaS provider misses the deadline.
• Input File Size: The size of input file provided by users.
• Request Length: How many Millions of Instructions (MI) are required to be executed to serve the request?

2.1.2. SaaS provider
A SaaS provider rents resources from IaaS providers and leases software as services to users. SaaS providers aim at

minimizing their operational cost by efficiently using resources from IaaS providers, and improving Customer Satisfaction
Level (CSL) by satisfying SLAs, which are used to guarantee QoS requirements of accepted users. From SaaS provider’s point
of view, there are two layers of SLA with both users and resource providers, which are described in Section 2.1.1 and
Section 2.1.3. It is important to establish two SLA layers, because SLA with user can help the SaaS provider to improve
the customer satisfaction level by gaining users’ trust of the quality of service; SLA with resource providers can enforce
resource providers to deliver the satisfied service. If any party in the contract violates its terms, the defaulter has to pay for
the penalty according to the clauses defined in the SLA.

2.1.3. IaaS provider
An IaaS provider (RP), offers VMs to SaaS providers and is responsible for dispatching VM images to run on their physical

resources. The platform layer of SaaS provider uses VM images to create instances. It is important to establish SLA with a
resource provider – SLA(R), because it enforces the resource provider to guarantee service quality. Furthermore, it provides
a risk transfer for SaaS providers, when the terms are violated by resource provider. In this work, we do not consider the
compensation given by the resource provider because 85% resource providers do not really provide penalty enforcement for
SLA violation currently [30]. The SLA(R) includes the following properties:

• Service Initiation Time: How long it takes to deploy a VM.
• Price: How much a SaaS provider has to pay per hour for using a VM from a resource provider?
• Input Data Transfer Price: How much a SaaS provider has to pay for data transfer from local machine (their own

machine) to resource provider’s VM.
• Output Data Transfer Price: How much a SaaS provider has to pay for data transfer from resource provider’s VM to

local machine?
• Processing Speed: How fast the VM can process? We use Machine Instruction Per Second (MIPS) of a VM as processing

speed.
• Data Transfer Speed: How fast the data is transferred? It depends on the location distance and also the network per-

formance.

2.2. Profit model

In this section we describe mathematical equations used in our work. Let at a given time instant t , I be the number of
initiated VMs, and J be the total number of IaaS providers. Let IaaS provider j provide N j types of VM, where each VM type
l has P jl price. The prices/GB charged for data transfer-in and -out by the IaaS provider j are inPri j and outPri j respectively.
Let (iniTi jl) be the time taken for initiating VM i of type l.

Let a new user submit a service request at submission time subT new to the SaaS provider. The new user offers a maximum
price Bnew (Budget) to SaaS provider with deadline DLnew and Penalty Rate βnew . Let inDSnew and outDSnew be the data-in
and -out required to process the user requests.

Let Costnew
ijl be the total cost incurred to the SaaS provider by processing the user request on VM i of type l and resource

provider j. Then, the profit Prof new
ij gained by the SaaS provider is defined as:

Prof new
ijl = Bnew − Costnew

ijl ; ∀i ∈ I, j ∈ J , l ∈ N j (1)

The total cost incurred to SaaS provider for accepting the new request consists of request’s processing cost (PCnew
ijl ), data

transfer cost (DTCnew
jl ), VM initiation cost (ICnew

ijl ), and penalty delay cost (PDCnew
ijl T ) (to compensate for miss deadline). Thus,

the total cost is given by processing the request on VM i of type l on IaaS provider j.
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Costnew
ijl = PCnew

ijl + DTCnew
jl + ICnew

ijl + PDCnew
ij ; ∀i ∈ I, j ∈ J , l ∈ N j (2)

The processing cost (PCnew
ijl ) for serving the request is dependent on the new request’s processing time (procT new

ijl ) and
hourly price of VMil (type l) offered by IaaS provider j. Thus, PCnew

ij is given by:

PCnew
ijl = procT new

ijl × P jl, ∀i ∈ I, j ∈ J , l ∈ N j (3)

Data transfer cost as described in Eq. (4) includes cost for both data-in and data-out.

DTCnew
jl = inDSnew × inPri jl + outDSnew × outPri jl; ∀ j ∈ J , l ∈ N j (4)

The initiation cost (ICnew
ij ) of VM i (type l) is dependent on the type of VM initiated in the data center of IaaS provider j.

ICnew
ijl = iniTi j × P jl, ∀i ∈ I, j ∈ J , l ∈ N j (5)

In Eq. (7), penalty delay cost (PDCnew
ij ) is how much the service provider has to give discount to users for SLA(U) violation.

It is dependent on the penalty rate (βnew) and penalty delay time (PDTnew
ij ) period. We model the SLA violation penalty as

linear function which is similar to other related works [1,4,5].

PDCnew
ijl = βnew × PDTnew

ijl ; ∀i ∈ I, j ∈ J , l ∈ N j (6)

To process any new request, SaaS provider either can allocate a new VM or schedule the request on an already initiated
VM. If service provider schedules the new request on an already initiated VMi , the new request has to wait until VM i
becomes available. The time for which the new request has to wait until it start processing on VM i is

∑K
k=1 procT k

i jl , where
K is the number of request yet to be processed before the new request. Thus, PDTnew

ljl is given by:

PDTnew
ijl =

{
t + ∑K

k=1 procT k
i jl + procT new

ijl − DLnew, if new VM is not initiated

procT new
ijl + iniTi jl + DTTnew

ijl − DLnew, if new VM is initiated
(7)

DTTnew
ijl is the data transfer time which is the summation of time taken to upload the input (inDTnew

ill ) and download the
output data (outDTnew

ijl ) from the VMil on IaaS provider j. The data transfer time is given by:

DTTnew
ijl = inDTnew

ijl + outDTnew
ijl ; ∀i ∈ I, j ∈ J , l ∈ N j (8)

Thus, the response time (T new
ijl ) for the new request to be processed on VMil of IaaS provider j is calculated in Eq. (9)

and consists of VM initiation time (iniT new
ijl ), request’s service processing time (procT new

ijl ), data transfer time (DTTnew
ijl ), and

penalty delay time (PDTnew
ijl ).

T new
ijl =

{∑K
k=1 procT k

i jl + procT new
ijl , if new VM is not initiated

procT new
ijl + iniTi jl + DTTnew

ijl , if new VM is initiated
(9)

The investment return (retnew
ijl ) to accept new user request per hour on a particular VMil in IaaS provider j is calculated

based on the profit (prof new
ijl ) and time (T new

ijl ):

retnew
ijl = prof new

ijl

T new
ijl

; ∀i ∈ I, j ∈ J , l ∈ N j (10)

3. Algorithms and strategies

In this section, we present four strategies to analyse whether a new request can be accepted or not based on the QoS
requirements and resource capability. Then, we propose three algorithms utilizing these strategies to allocate resources. In
each algorithm, the admission control uses different strategies to decide which user requests to accept in order to cause
minimal performance impact, avoiding SLA penalties that decrease SaaS provider’s profit. The scheduling part of the algo-
rithms determines where and which type of VM will be used by incorporating the heterogeneity of IaaS providers in terms
of their price, service initiation time, and data transfer time.

3.1. Strategies

In this section, we describe four strategies for request acceptance: a) initiate new VM, b) queue up the new user request
at the end of scheduling queue of a VM, c) insert (prioritize) the new user request at the proper position before the ac-
cepted user requests and, d) delay the new user request to wait all accepted users to finish. Inputs of all strategies are QoS
parameters of the new request and resource providers’ related information. Outputs of all strategies are admission control
and scheduling related information, for example, which VM and in which resource provider the request can be scheduled.
All flow charts in this section are in the context of each VM in each resource provider.
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Fig. 2. Flow chart of ‘initiate new VM strategy’.

Fig. 3. Flow chart of ‘wait strategy’.

3.1.1. Initiate new VM strategy
Fig. 2 illustrates the flow chart of “initiate new VM strategy”, which first checks for each type of VMs in each resource

provider in order to determine whether the deadline of new request is long enough comparing to the estimated finish time.
The estimated finish time depends on the estimated start time, request processing time, and VM initiation time.

If the new request can be completed within the deadline, the investment return is calculated (Eq. (10)). If there is value
added according to the investment return, and then all related information (such as resource provider ID, VM ID, start time
and estimated finish time) are stored into the potential schedule list. This strategy is represented as canInitiateNewVM() in
algorithms.

3.1.2. Wait strategy
Fig. 3 illustrates the “wait strategy”, which first verifies each VM in each resource provider if the flexible time ( f T new

ijl ) of
the new request is enough to wait all accepted requests in vmil to complete. The f T new

ijl is given by Eq. (11), in which K
indicates total number of all accepted requests, I indicates all VMs, J indicates all resource providers, l indicates VM type,
and N j indicates all VM types provided by resource provider j.

f T new
ijl = DLnew −

K∑
k=1

procT k
i jl − subT new; ∀i ∈ I, j ∈ J , k ∈ K , l ∈ N j (11)

If new request can wait for all accepted requests to complete, and then the investment return is calculated and the
remaining steps are the same as those in initiate new VM strategy. This strategy is called as canWait() in algorithms.

3.1.3. Insert strategy
Fig. 4 shows the flow chart of “insert strategy”, which first checks verifies if any accepted request uk according to latest

start time in vmil can wait the new request to finish. If the flexible time of accepted request ( f T k
i jl) is enough to wait for a

new user request to complete then the new request is inserted before request k. The f T k indicates the duration of request
i jl



L. Wu et al. / Journal of Computer and System Sciences 78 (2012) 1280–1299 1285
Fig. 4. Flow chart of ‘insert strategy’

Fig. 5. Flow chart of ‘penalty delay strategy’.

wait time with deadline and it is given by Eq. (12), in which DLk indicates the deadline of accepted request, k indicates the
position of accepted request, and K indicates the total number of accepted user requests, l indicates the VM type and N j
indicates all VM types provided by resource provider j.

f T k
i jl = DLk −

K∑
n=1,
n �=k

procT n
i jl − T new

ijl − subT new; ∀i ∈ I, j ∈ J , k ∈ K , l ∈ N j (12)

If there is an already accepted request uk that is able to wait for the new user request to complete, the strategy checks
if the new request can complete before its deadline. If so, unew gets priority over uk , then the algorithm calculates the
investment return and the remaining steps are the same as those in initiate new VM strategy. This strategy is presented as
canInsert() in algorithms.

3.1.4. Penalty delay strategy
Fig. 5 describes the flow chart of “penalty delay strategy”, which first checks if the new user request’s budget is enough to

wait for all accepted user requests in vmi to complete after its deadline. Eq. (1) is used to check whether budget is enough
to compensate the penalty delay loss, and then the investment return is calculated and the remaining steps are the same
as those in initiate new VM strategy. This strategy is presented as function canPenaltyDelay() in algorithms.

3.2. Proposed algorithms

A service provider can maximize the profit by reducing the infrastructure cost, which depends on the number and type
of initiated VMs in IaaS providers’ data centre. Therefore, our algorithms are designed in a way to minimize the number
of VMs by maximizing the utilization of already initiated VMs. In this section, based on above strategies we propose three
algorithms, which are ProfminVM, ProfRS, and ProfPD:
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• Maximizing the profit by minimizing the number of VMs (ProfminVM).
• Maximizing the profit by rescheduling (ProfRS).
• Maximizing the profit by exploiting the penalty delay (ProfPD).

3.2.1. Maximizing the profit by minimizing the number of VMs (ProfminVM)
Algorithm 1 describes the ProfminVM algorithm, which involves two main phases: a) admission control and b) schedul-

ing.
In admission control phase, the algorithm analyses if the new request can be accepted either by queuing it up in an

already initiated VM or by initiating a new VM. Hence, firstly, it checks if the new request can be queued up by waiting for
all accepted requests on any initiated VM – using Wait Strategy (Step 3). If this request cannot wait in any initiated VM, then
the algorithm checks if it can be accepted by initiating a new VM provided by any IaaS provider – using Initiate New VM
Strategy (Step 8). If a SaaS provider does not make any profit by utilizing already initiated VMs nor by initiating a new VM to
accept the request, then the algorithm rejects the request (Step 9). Otherwise, the algorithm gets the maximum investment
return from all of the possible solutions (Step 13). The decision also depends on the minimum expected investment return
(expInvRetnew

ijl ) of the SaaS provider. If the investment return retnew
ijl is more than the SaaS provider’s expInvRetnew

ijl , the
algorithm accepts the new request (Steps 14, 15), otherwise it rejects the request (Steps 16, 17). The expected investment
return ratio w is customized by SaaS providers. The expected investment return (expInvRetnew

ijl ) is given by Eq. (13):

expInvRetnew
ijl = ω × Costnew

ijl

T new
ijl

; ∀i ∈ I, j ∈ J , l ∈ N j (13)

The scheduling phase is the actual resource allocation and scheduling based on the admission control result; if the
algorithm accepts the new request, the algorithm first finds out in which IaaS provider rp j and which VM vmi a SaaS
provider can gain the maximum investment return by extracting information from PotentialScheduleList (Step 20). If the
maximum investment return is gained by initiating a new VM (Step 22), then the algorithm initiates a new VM in the
referred resource provider (rp j ), and schedule the request to it. Finally, the algorithm schedules the new request on the
referred VM (vmi) (Step 23). The time complexity of this algorithm is O (R J + R), where R indicates the total number of
requests and J indicates the number of resource providers.

Algorithm 1. Pseudo-code for ProfminVM algorithm.

Input: New user’s request parameters (unew), expInvRetnew
ij

Output: Boolean
Functions:
admissionControl() {
1. If (there is any initiated VM) {
2. For each vmi in each resource provider rp j {
3. If (! canWait(unew, vmi)) {
4. continue;
5. }
6. }
7. }
8. Else If (! canInitiateNew(unew, rp j))
9. Return reject
10. If (PotentialScheduleList is empty)
11. Return reject
12. Else {
13. Get the max[retnew

ij , SDij] in PotentialScheduleList
14. If (max(retnew

ij ) � expInvRetnew
ij )

15. Return accept
16. Else
17. Return reject
18. }
19.
}
schedule() {
20. Get the [retnew

max, SDmax] in maxRet(PotentialScheduleList)
21. If (SDmax is initiateNewVM)
22. initiateNewVM in rp j
23. Schedule the unew in VMmax in rpmax according to SDmax.
}
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3.2.2. Maximizing the profit by rescheduling (ProfRS)
In ProfminVM algorithm, a new user request does not get priority over any accepted request. This inflexibility affects the

profit of a SaaS provider since many urgent and high budget requests will be rejected. Thus, ProfRS algorithm reschedules
the accepted requests to accommodate an urgent and high budget request. The advantage of this algorithm is that a SaaS
provider accepts more users utilizing initiated VMs to earn more profit.

Algorithm 2 describes ProfRS algorithm. In the admission control phase, the algorithm analyses if the new request can
be accepted by waiting in an already initiated VM, inserting into an initiated VM, or initiating a new VM. Hence, firstly it
verify if new request can wait all accepted requests in any already initiated VM – invoking Wait Strategy (Step 3). If the
request cannot wait, then it checks if the new request can be inserted before any accepted request in an already initiated
VM – using Insert Strategy (Step 4). Otherwise the algorithm checks if it can be accepted by initiating a new VM provided
by any IaaS provider – using Initiate New VM Strategy (Step 5). If a SaaS provider does not make sufficient profit by any
strategy, the algorithm rejects this user request (Steps 10, 11). Otherwise the algorithm gets the maximum return from all
analysis results (Step 15). The remaining steps are the same as those in ProfminVM algorithm. The time complexity of this
algorithms is O (R J + R2), where R indicates total number of requests, J indicates total number of IaaS providers.

Algorithm 2. Pseudo-code for ProfRS algorithm.

Input: New user’s request parameters (unew), expInvRetnew
ij

Output: Boolean
Functions:
admissionControl() {
1. If (there is any initiated VM) {
2. For each vmi in each resource provider rp j {
3. If (! canWait(unew, vmi)) {
4. If (! canInsert(unew, vmi)) {
5. If (! canInitiateNew(unew, rp j)) {
6. continue;
7. }
8. }
9. }
10. Else If (! canInitiateNew(unew, rp j))
11. Return reject
12. If (PotentialScheduleList is empty)
13. Return reject
14. Else {
15. Get the max[retnew

ij , SDij] in PotentialScheduleList
16. If (max(retnew

ij ) � expInvRetnew
ij )

17. Return accept
18. Else
19. Return reject
20. }

}
}

}
schedule() {
21. Get the [retnew

max, SDmax] in maxRet(PotentialScheduleList)
22. If (SDmax is initiateNewVM)
23. initiateNewVM in rp j
24. Schedule the unew in VMmax in rpmax according to SDmax.
}

3.2.3. Maximizing the profit by exploiting penalty delay (ProfPD)
To further optimize the profit, we design the algorithm ProfPD by considering delaying the new requests to accept more

requests.
Algorithm 3 describes ProfPD algorithm. In the admission control phase, we analyse if the new user request can be

processed by queuing it up at the end of an already initiated VM, by inserting it into an initiated VM, or by initiating a
new VM. Hence, firstly the algorithm check if the new request can wait all accepted requests to complete in any initiated
VM – invoking Wait Strategy (Step 3). If the request cannot wait, then it checks if the new request can be inserted before
any accepted request in any already initiated VM – using Insert Strategy (Step 4). Otherwise the algorithm checks if the new
request can be accepted by initiating a new VM provided by any resource provider – using Initiate New VM Strategy (Step 5)
or by delaying the new request with penalty compensation – using Penalty Delay Strategy (Step 7). If a SaaS provider does
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not make sufficient profit by any strategy, the algorithm rejects the new request (Step 14). Otherwise, the request is accepted
and scheduled based on the entry in PotentialScheduleList which gives the maximum return (Step 23). The rest of the steps
are the same as those in ProfminVM. The time complexity of this algorithms is O (R J + R2), where R indicates total number
of requests, J indicates total number of IaaS providers.

Algorithm 3. Pseudo-code for ProfPD algorithm.

Input: New user’s request parameters (unew), expInvRetnew
ij

Output: Boolean
Functions:
admissionControl() {
1. If (there is any initiated VM) {
2. For each vmi in each resource provider rp j {
3. If (! canWait(unew, vmi)) {
4. If (! canInsert(unew, vmi)) {
5. If (! canInitiateNew(unew, rp j))
6. continue;
7. If (! canPenaltyDelay(unew, rp j))
8. continue;
9. }
10. }
11. }
12. }
13. Else If (! canInitiateNew(unew, rp j))
14. Return reject
15. If (PotentialScheduleList is empty)
16. Return reject
17. Else { Get the max[retnew

ij , SDij] in PotentialScheduleList
18. If (max(retnew

ij ) � expInvRetnew
ij )

19. Return accept
20. Else
21. Return reject
22. }
}
schedule() {
23. Get the [retnew

max, SDmax] in maxRet(PotentialScheduleList)
24. If (SDmax is initiateNewVM)
25. initiateNewVM in rp j
26. Schedule the unew in V Mmax in rpmax according to SDmax.
}

4. Performance evaluation

In this section, we first explain the reference algorithms and then describe our experiment methodology, followed by
performance evaluation results, which includes comparison with reference algorithms and among our proposed algorithms.

As existing algorithms in the literature are designed to support scenarios different to those considered in our work, we
are comparing proposed algorithms to reference algorithms exhibiting lower and up bounds: MinResTime and StaticGreedy.

• The MinResTime algorithm selects the IaaS provider where new request can be processed with the earliest response
time to avoid deadline violation and profit loss, therefore it minimizes the response time for users. Thus, it is used to
know how fast user requests can be served.

• The StaticGreedy algorithm assumes that all user requests are known at the beginning of the scheduling process. In this
algorithm, we select the most profitable schedule obtained by sorting all the requests either based on Budget or Deadline,
and then using ProfPD algorithm. Thus, the profit obtained from StaticGreedy algorithm acts as an upper bound of the
maximum profit that can be generated. It is clear that assumption taken in StaticGreedy algorithm is not possible in
reality as all the future requests are not known.

4.1. Experimental methodology

We use CloudSim [19] as a Cloud environment simulator and implement our algorithms within this environment. We
observe the performance of the proposed algorithms from both users’ and SaaS providers’ perspectives. From users’ per-
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Table 1
The summary of resource provider characteristics.

Provider VM types VM price ($/hour)

Amazon EC2 Small/Large 0.12/0.48
GoGrid 1 Xeon/4 Xeon 0.19/0.76
RackSpace Windows 0.32
Microsoft Azure Compute 0.12
IBM VMs 32-bit (Gold) 0.46

spective, we observe how many requests are accepted and how fast user requests are processed (we call it average response
time). From SaaS providers’ perspective, we observe how much profit they gain and how many VMs they initiate. Therefore,
we use four performance measurement metrics: total profit, average request response time, number of initiated VMs, and
number of accepted users. All the parameters from both users’ and IaaS providers’ side used in the simulation study are
given in following subsections:

4.1.1. Users’ side
We examine our algorithms with 5000 users. From the user side, five parameters (deadline, service time, budget, arrival

rate and penalty rate factor) are varied to evaluate their impact on the performance of our proposed algorithms. Request
arrival rate follows poisson distribution as many previous works [37,38] model arrival rate as poisson distribution. Similar
as other works, we use a normal distribution to model all parameters (standard deviation = (1/2)× mean), because there is
no available workload specifying these parameters. Eq. (14) is used to calculate the deadline (DLnew

ijl ). α is the factor which
is used to vary the deadline from “very tight” (α = 0.5) to “very relax” (α = 2.5). estprocT new

ijl indicates the new service
request’s estimated processing time.

DLnew
ijl = α × estprocT new

ijl + estprocT new
ijl ; ∀i ∈ I, j ∈ J , l ∈ N j (14)

• Service time is estimated based on the Request Length (MI) and the Millions of Instruction per Second (PS) of a VM.
The mean Request Lengths are selected between 106 MI (“very small”) to 5 × 106 MI (“very large”), while MIPS value
for each VM type is fixed.

• In common economic models, budget is generated by random numbers [1]. Therefore, we follow the same random
model for budget, and vary it from “very small” (mean = 0.1$) to “very large” (mean = 1$). We choose budget factor
up to 1, because the trend of results does not show any change after 1.

• Five different types of request arrival rate are used by varying the mean from 1000 to 5000 users per second.
• The penalty rate β (the same as in Eq. (1)) is modelled by Eq. (15). It is calculated in terms of how long a user is

willing to wait (r) in proportion to the deadline when SLA is violated. In order to vary the penalty rate, we vary the
mean of r from “very small” (4) to “very large” (44).

β = Bnew

DLnew × r
; ∀i ∈ I, j ∈ J (15)

4.1.2. Resource providers’ side
We consider five resource providers – IaaS providers, which are Amazon EC2 [29], GoGrid [31], Microsoft Azure [33],

RackSpace [32] and IBM [34]. To simulate the effect of using different VM types, MIPS ratings are used. Thus, a MIPS value
of an equivalent processor is assigned to the request processing capability of each VM type. The price schema of VMs
follows the price schema of GoGrid [31], Amazon EC2 [29], RackSpace [32], Microsoft Azure [33], and IBM [34]. The detail
resource characteristics which are used for modelling IaaS providers are shown in Table 1. The three different types of
average VM initiation time are used in the experiment, and the mean initiation time varies from 30 seconds to 15 minutes
(standard deviation = (1/2)×mean). The mean of initiation time is calculated by conducting real experiments of 60 samples
on GoGrid [31] and Amazon EC2 [29] done for four days (2 week days and 2 weekend days).

4.2. Performance results

In this section, we first compare our proposed algorithms with reference algorithms by varying number of users. Then,
the impact of QoS parameters on the performance metrics is evaluated. Finally, robustness analysis of our algorithm is
presented. All of the results present the average obtained by 5 experiment runs. In each experiment we vary one parameter,
and others are given constant mean value. The constant mean, which are used during experiment, are as follows: arrival
rate = 5000 requests/sec, deadline = 2 ∗ estprocT, budget = 1$, request length = 4 × 106 MI, and penalty rate factor (r) = 10.

4.2.1. Comparison with reference algorithms
To observe the overall performance of our algorithms, we vary the number of users from 1000 to 5000 without varying

other factors such as deadline and budget. Fig. 6 presents the comparison of our proposed algorithms with reference al-
gorithms StaticGreedy and MinResTime in terms of the four performance metrics. When the number of user requests varies
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Fig. 6. Overall algorithms’ performance during variation in number of user requests.

from 1000 to 5000, for each algorithm the total profit and average response time has increased, because of more user
requests.

Fig. 6 shows that ProfPD earns 8% less profit (Requests = 5000) for SaaS provider than StaticGreedy which is used as
the upper bound. That is because in the case of StaticGreedy, all the user requests are already known from the beginning
to the SaaS provider. The base algorithm MinResTime has smaller (two third of StaticGreedy) response time, but earns less
profit (approximately half of ProfPD). These observations indicate the trade-off between response time and profit, which
SaaS provider has to manage while scheduling requests.

Fig. 6a shows that the ProfPD achieves (15%) more profit over ProfRS and (17%) over ProfminVM by accepting (10%, 15%)
more user requests and initiating (19%, 40%) less number of VMs, when number of users changes from 1000 to 5000.
When number of users is 1000 ProfPD earns 4% and 15% more profit over ProfminVM and ProfRS respectively. When the
user number is increased from 1000 to 5000, the profit difference between ProfPD and other two algorithms became larger.
This is because when the number of requests increased, the number of users being accepted increased by utilizing initiated
VMs. If all requests are known before scheduling, then StaticGreedy is the best choice for maximizing profit, however, in the
real Cloud computing market, these are unknown. Therefore, a SaaS provider should use ProfPD, however, ProfRS is a better
choice for a SaaS provider in comparison with ProfminVM. In addition, the ProfPD is effective in maximizing profit in heavy
workload situations.

Fig. 6b shows that our algorithms’ trends of response time increase from 1000 users to 5000 users because of increasing
in processing of user requests per VM. When there is smaller number of requests, the difference between different algo-
rithm’s response times becomes significant. For example, with 1000 requests, ProfPD gives users 16% lower response time
than ProfminVM and ProfRS, and even accept more requests. This is because ProfPD scheduled less number of users per VM,
thus user’s experience less delay. In other scenarios the reason for lower response time is smaller initiation time. ProfminVM
provides the lowest response time compared to others, because it can serve a new user with new VMs.

4.2.2. Impact of QoS parameters
In the following sections, we examine various experiments by varying both user and resource provider side’s SLA prop-

erties to analyse the impact of each parameter.
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Fig. 7. Impact of arrival rate variation.

4.2.2.1. Impact of variation in arrival rate To observe the impact of arrival rate in our algorithms, we vary the arrival rate
factor, while keeping all other factors such as deadline, budget as the same. All experiments are conducted with 5000 user
requests. It can be seen from Fig. 7 that when arrival rate is “very high”, the performance of ProfminVM, ProfRS, and ProfPD
are affected significantly. The overall trend of profit is decreasing and the response time is increasing because when there
is more user arrival per second, the service capability is decreased due to fewer new VM instantiations.

Fig. 7a shows that the ProfPD achieves the highest profit (maximum 15% more than ProfminVM and ProfRS) by accepting
(45%) more users and initiating the least number of VMs (19% less than ProfminVM, 28% less than ProfRS) when arrival rate
is increases from “very small” to “very large”. This is because ProfPD accept users with existing machines with penalty delay.
In the same scenario, ProfminVM and ProfRS achieve similar profit, but ProfRS accepts 4% more requests with 13% more VMs
than ProfminVM. Therefore, in this scenario ProfPD is the best choice for a SaaS provider. However, when arrival rate is “very
large”, and the number of VM is limited, ProfRS is a better choice compared to ProfminVM because although it provides
similar profit as ProfminVM, it accepts more requests, leading to market share expanding.

Fig. 7b shows that the ProfPD achieves in the smallest response time and accepted more number of users with less
number of VMs except when arrival rate is very high. Even in the case of high arrival rate, the difference between response
time from ProfPD and its next competitor is just 3%. ProfminVM and ProfRS have similar response times. However, there is
a drastic increase in response time when the arrival rate is very high because more requests are accepted per VM which
delays the processing of requests. It is safe to conclude that even considering the response time constraints from users, the
first choice for a SaaS provider is still the ProfPD.

4.2.2.2. Impact of variation in deadline To investigate the impact of deadline in our algorithms, we vary the deadline, while
keeping all other factors such as arrival rate and budget fixed. Fig. 8a shows that the ProfPD achieved the highest profit (45%
over ProfminVM and 41% over ProfRS) by accepting 33% more user requests (Fig. 8d) and initiating 52% less VMs (Fig. 8c).
In some scenarios, ProfminVM provides higher profit than ProfRS, for example, when deadline is “very tight”, because ProfRS
accepted requests with larger service time, which occupy the space for accepting other requests. Hence, in general a SaaS
provider should use ProfPD for maximizing profit in this scenario.

Fig. 8b shows that when deadline is relaxed, ProfPD results in 4% higher average response time than in the case of
ProfminVM and ProfRS. The ProfPD has larger response time because of the two factors governing response time, i.e., request’s
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Fig. 8. Impact of deadline variation.

service time and VM initiation time. It can be seen from Fig. 8d that ProfPD always requires less VMs, to process more
requests. Thus, when service time is comparable to the VM initiation time, the response time will be lower. When the VM
initiation time is larger than the service time, the response time is affected by the number of initiated VMs.

4.2.2.3. Impact of variation in budget Fig. 9 shows variation of budget impacts our algorithms, while keeping all other factors
such as arrival rate and deadline fixed. Fig. 9a shows that when budget is varies from “very small” to “very large”, in average
the total profit by all the algorithms has increased, and response time has decreased since less requests are processed using
more VMs. From Fig. 9a, it can be observed that ProfPD gains the highest profit for SaaS provider except when budget is
“large”. In case of scenario when budget is “large”, ProfminVM provides the highest profit (20%) over other algorithms by
accepting similar number of requests while initiating more VMs without penalty delay. This is due to an increase in the
Penalty Delay Rate (β) (Eq. (15)) with the budget raise. Between ProfminVM and ProfRS, ProfminVM provides more profit in
all scenarios. Therefore, in this scenario a SaaS provider should consider ProfPD, ProfminVM compared with ProfRS.

In the case of response time (Fig. 9b), ProfPD on average delayed the processing of request for the longest time (e.g. 33%
bigger response time for “very small” budget scenario) even though it processed more user requests and initiated less VMs.
However, when budget is “large”, the response time provided by ProfminVm is the longest even though it accepts similar
number of users as ProfPD. This anomaly caused by the contribution of VM initiation time which becomes very significant
when ProfRS initiated large number of VMs.

4.2.2.4. Impact of variation in service time Fig. 10 shows how service time impacts our algorithms, while keeping all other
factors such as arrival rate and deadline as the same. In order to vary the service time, five classes of request length (MI)
are chosen from “very small” (106 MI) to “very large” (5 × 106 MI).

Fig. 10a shows that the total profit by all algorithms has slightly decreased but response time increased rapidly when
the request length varies from “very small” to “very large”. ProfPD achieves the highest profit among other algorithms. For
example, in the case of “very large” request length scenario, ProfPD generated about 30% more profit than other algorithms
by accepting 24% more requests (Fig. 10d) and initiating 32% (Fig. 10c) less VMs. In addition, ProfminVM and ProfRS achieve
similar profit in most of the cases. Therefore, the ProfPD is the best solution for any size of requests.
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Fig. 9. Impact of budget variation.

In addition, it can be observed from Fig. 10b that ProfPD provides only a slightly higher response time (almost 6%) than
others except when the request size is very small. When request size is very small, the response time provided by ProfPD
becomes 27% bigger than others, because it accepts 63% more user requests with 22% more VMs, leading to more requests
waiting for processing on each VM.

4.2.2.5. Impact of variation in penalty rate In this section, we investigate how penalty rate (β) impacts our algorithms. The
penalty rate (Eq. (15)) depends on how long user is willing to wait (r), which is defined as penalty rate factor in our paper.
Therefore, when the penalty rate factor (r) is large, the penalty rate is small. All the results are presented in Fig. 11.

In can be observed from Fig. 11 that only ProfPD shows some effect of variation in penalty rate since this is the only
algorithm which uses Penalty Delay strategy to maximize the total profit. The total profit (Fig. 11a) and average response
time (Fig. 11b) are only slightly decreased when the (r) is varied from “very low” to “very high”. In almost all scenarios,
ProfPD achieves 29% more profit over others by accepting 22% more requests and initiating 30% less VMs. In addition, when
the penalty rate varies from “very low” to very high”, the response time slightly decreased. This is because ProfPD accepts
a little bit less requests with similar number of VMs. Thus, the number of requests waiting in each VM becomes smaller,
leading to faster response time for each request.

4.2.2.6. Impact of variation in initiation time In this section, we analyse the variation of initiation time impacts our algo-
rithms. Fig. 12a illustrates that with increase in initiation time the total profit achieved by all the algorithms decreases
slightly while response time has increased a little bit. Due to increase in initiation time, the number of initiated VMs
(Fig. 12c) has decreased rapidly due to the contribution of initiation time in SaaS providers cost (spending). In all the sce-
narios, ProfPD achieves highest profit over others by accepting 17% more requests (Fig. 12d) and with 37% less initiated VMs.
Therefore, ProfPD is the best choice for a SaaS provider in this scenario.

The response time offered by ProfPD is slightly higher than others in most of cases, because it accepted more users with
less number of VMs, in other word, a VM required to serve more number of users, leading to delay in request processing.
The response time of ProfPD is the lowest in this scenario; because of large initiation time of VM, the response time is
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Fig. 10. Impact of request length variation.

also increased with each initiated VM. However, the contribution to delay in processing of requests, due to more number of
requests per VM also increases. This leads to higher response time in the scenario when the initiation time is “very long”.

4.3. Robustness analysis

In order to evaluate the robustness of our algorithms, we run some experiments by reducing the actual performance of
VMs in the SLA(R) promised by IaaS providers. This performance degradation has been observed by previous research study
in Cloud computing environments [35]. This experiment is conducted also to justify the inclusion of compensation (penalty)
clauses in SLAs which is absent in current IaaS providers’ SLAs [30]. We modelled the reduced performance using a normal
distribution with average variation between mean varies 0% and 50%.

Fig. 13 shows that during the degradation of VM performance, the average total profit (Fig. 13a) has reduced 11% and
average response time (Fig. 13b) has doubled with the increase in performance degradation of initiated VMs. This is because
of the performance degradation of VMs has not been accounted in SLA(R). Therefore, a SaaS provider does not consider this
variation during their scheduling, but it impacts significantly on the total profit and average user requests response time.

Two solutions to handle this VMs performance degradation are: first, utilization of the penalty clause in SLA(R) to
compensate for profit loss; second, considering the degradation as a potential risk. Therefore, during the scheduling process
a (300 seconds) slack time is added in estimated service processing time and it can be seen from Fig. 14, that the latter
solution reduces considerably (from 0% to 50%, profit decreased only by 2%). Thus, if there is a risk for a SaaS provider
to enforce SLA violation with an IaaS provider, an alternative solution to reduce risk is by considering a slack time during
scheduling.

5. Related work

Research on market driven resource allocation and admission control has started as early as 1981 [10,6]. Most of the
market-based resource allocation methods are either non-pricing-based [15] or designed for fixed number of resources,
such as FirstPrice [4] and FirstProfit [7]. In Cloud, IaaS providers focusing on maximize profit and many works [26,15,3]
proposed market based scheduling approaches. For instance, Amazon [29] introduced spot instance way for customers to
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Fig. 11. Impact of penalty rate factor variation.

buy those unused resources at bargain prices. This is a way of optimizing resource allocation if customers are happy to be
terminated at any time. However, our goal is not only to maximize profit but also satisfy the SLA agreed with the customer.

At platform category, Projects such as InterCloud [16], Sky Computing [18], and Reservoir [17] investigated the tech-
nological advancement that is required to aid the deployment of cloud services across multiple infrastructure providers.
However, research at the SaaS provider level is still in its infancy, because many works do not consider maximizing profit
and guaranteeing SLA with the leasing scenario from multiple IaaS providers, where resources can be dynamically expanded
and contracted on demand.

In this section, since we focus on developing admission control and scheduling algorithms and strategies for SaaS
providers in Cloud, we divide related work into two sub-sections: admission control and scheduling.

5.1. Admission control

Yeo and Buyya presented algorithms to handle penalties in order to enhance the utility of the cluster based on SLA [1].
Although they have outlined a basic SLA with four parameters in cluster environment, multiple resources and multiple QoS
parameters from both user and provider sides are not explored.

Bichler and Setzer proposed an admission control strategy for media on demand services, where the duration of service
is fixed [12]. Our approach allows a SaaS provider to specify its expected profit ratio according to the cost, for example; the
SaaS provider can specify that the service request which can increase the profit in 3 times will be accepted.

Islam et al. investigated policies for admission control that consider jobs with deadline constraints and response time
guarantees [27,28]. The main difference is that they consider parallel jobs submitted to a single site, whereas we utilize
multiple VM from multiple IaaS providers to serve multiple requests.

Jaideep and Varma proposed learning-based admission control in Cloud computing environments [2]. Their work focuses
on the accuracy of admission control but does not consider software service providers’ profit.

Reig et al. contributed on minimizing the resource consumption by requests and executing them before their deadline
with a prediction system [23]. Both the works use deadline constraint to reject some requests for more efficient scheduling.
However, we also consider the profit constraint to avoid wastage of resources on low profit requests.
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5.2. Scheduling

Chun et al. built a prototype cluster of time-sharing CPU usage to serve user requests [13]. A market-based approach to
solve traffic spikes for hosting Internet applications on Cluster was studied by Coleman et al. [14,13]. Lee et al. investigated
a profit-driven service request scheduling for workflows [3]. These related works focus on scenarios with fixed resources,
while we focus on scenarios with variable resources.

Liu et al. analysed the problem of maximizing profit in e-commerce environment using web service technologies, where
the basic distributed system is Cluster [21]. Kumar et al. investigated two heuristics, HRED and HRED-T, to minimize business
value but they studied only the minimization of cost [36]. Garg et al. also proposed time and cost based resource allocation
in Grids on multiple resources for parallel applications [26]. However, our current study uses different QoS parameters, (e.g.
penalty rate). In addition, our current study focuses on Clouds, where the unit of resource is mostly VM, which may consist
of multiple processors.

Menasce et al. proposed a priority schema for requests scheduling based on user status. The algorithm assigns higher
priority to requests with shopping status during scheduling to improve the revenue [22]. Nevertheless, their work is not
SLA-based and response time is the only concern.

Xiong et al. focused on SLA-based resource allocation in Cluster computing systems, where QoS metrics considered
are response time, Cluster utilization, packet loss rate and Cluster availability [24]. We consider different QoS parameters
(i.e., budget, deadline, and penalty rate), admission control and resource allocation, and multiple IaaS providers. Netto et
al. considered deadline as their only QoS parameter for bag-of-task applications in utility computing systems considering
multiple providers [25]. Popovici et al. mainly focused on QoS parameters on resource provider’s side such as price and
offered load [7]. However, our work differs on QoS parameters from both users’ and SaaS providers’ point of view, such as
budget, deadline, and penalty rate.

In summary, this paper is unique in the following aspects:

• The utility function is time-varying by considering dynamic VM deploying time (aka initiation time), processing time
and data transfer time.
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• Our strategies adapt to dynamic resource pools and consistently evaluate the profit of adding a new instance or re-
moving instances, while most previous work deal with fixed size resource pools.

6. Conclusions and future directions

We presented admission control and scheduling algorithms for efficient resource allocation to maximize profit and cus-
tomer level satisfaction for SaaS providers. Through simulation, we showed that the algorithms work well in a number of
scenarios. Simulation results show that in average the ProfPD algorithm gives the maximum profit (in average save about
40% VM cost) among all proposed algorithms by varying all types of QoS parameters. If a user request needs fast response
time, ProfRS and ProfminVM could be chosen depending on the scenario. The summary of algorithms and their ability to
deal with different scenarios is shown in Table 2.

In this work, we have assumed that the estimated service time is accurate since existing performance estimation tech-
niques (e.g. analytical modelling [20], empirical, and historical data [21]) can be used to predict service times on various
types of VMs. However, still some error can exist in this estimated service time [35] due to variable VMs’ performance in
Cloud. The impact of error could be minimized by two strategies: first, considering the penalty compensation clause in SLAs
with IaaS provider and enforce SLA violation; second, adding some slack time during scheduling for preventing risk.

In the future we will increase the robustness of our algorithms by handling such errors dynamically. In addition, due
to this performance degradation error, we will consider SLA negotiation in Cloud computing environments to improve the
robustness. We will also add different type of services and other pricing strategies such as spot pricing to increase the profit
of service provider. Moreover, to investigate the knowledge-based admission control and scheduling for maximizing a SaaS
provider’s profit is one of our future directions for improving our algorithms’ time complexity.
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Fig. 14. Impact of performance degradation variation after considering slack time.

Table 2
Summary of heuristics of comparison results (Profit).

Algorithm Time complexity Overall performance

Arrival
rate

Deadline Budget Request
length

Penalty
rate
factor

VM
initiation
time

Data
transfer

ProfminVM O (K J + K ) Good
(low-high)

Good
(low-high)

Good Good
(very low &
very high)

No effect Okay Good
(very low &
very high)

ProfRS O (K J + K 2) Okay
(very high)

Okay
(very high)

Okay
(very low)

Okay No effect Good
(low-high)

Okay

ProfPD O (K J + K 2) Best Best Best Best Best Best Best
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