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SUMMARY

Effective scheduling is a key concern for the execution of performance-driven grid applications such as
workflows. In this paper, we first define the workflow scheduling problem and describe the existing heuristic-
based and metaheuristic-based workflow scheduling strategies in grids. Then, we propose a dynamic
critical-path-based adaptive workflow scheduling algorithm for grids, which determines efficient mapping
of workflow tasks to grid resources dynamically by calculating the critical path in the workflow task graph
at every step. Using simulation, we compared the performance of the proposed approach with the existing
approaches, discussed in this paper for different types and sizes of workflows. The results demonstrate that
the heuristic-based scheduling techniques can adapt to the dynamic nature of resource and avoid performance
degradation in dynamically changing grid environments. Finally, we outline a hybrid heuristic combining
the features of the proposed adaptive scheduling technique with metaheuristics for optimizing execution cost
and time as well as meeting the users requirements to efficiently manage the dynamism and heterogeneity
of the hybrid cloud environment. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many of the large-scale scientific applications executed on present-day grids are expressed as com-
plex e-Science workflow [1,2], which is a set of ordered tasks that are linked by data dependencies.
A workflow management system [3] is generally employed to define, manage, and execute these
workflow applications on grid resources. A workflow management system uses a specific scheduling
strategy for mapping the tasks in a workflow to suitable grid resources in order to satisfy user
requirements. Numerous workflow scheduling strategies have been proposed in literature for differ-
ent objective functions [4]. Figure 1(b) illustrates the execution of the workflow shown in Figure 1(a)
on a traditional distributed computing environment.

However, the majority of these scheduling strategies are static in nature. They produce a good
schedule given the current state of grid resources and do not take into account changes in resource
availability. On the other hand, dynamic scheduling is done on-the-fly considering the current state
of the system and adaptive in nature. Thus, in this paper, we present a dynamic workflow schedul-
ing technique that not only dynamically minimizes the workflow execution time but also reduces
the scheduling overhead, which constitutes a significant amount of time used by the scheduler to
generate the schedule.

*Correspondence to: Rajiv Ranjan, Information Engineering Laboratory, CSIRO ICT Centre, Camberra, Australia.
†E-mail: rajiv.ranjan@csiro.au
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Figure 1. Typical scientific workflow applications management scenario in distributed computing environ-
ment. (a) Example of workflow: weather prediction application; (b) workflow management system.
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Critical path (CP) heuristics [5] have been used extensively for scheduling interdependent tasks
in multiprocessor systems. These heuristics aim to determine the longest of all execution paths from
the beginning to the end (or the critical path) in a task graph and schedule them earliest so as to
minimize the execution time for the entire graph. Kwok and Ahmad [6] introduced the dynamic CP
(DCP) algorithm in which the CP is dynamically determined after each task is scheduled. However,
this algorithm is designed for mapping tasks on to homogeneous processors, and is static, in the
sense that the schedule is only computed once for a task graph. We extend the DCP algorithm to
map and schedule tasks in a workflow on to heterogeneous resources in a dynamic grid environ-
ment. To evaluate the performance of our proposed algorithm, called DCP for grids (DCP-G), we
have compared it against the existing approaches, discussed in this paper for different types and
sizes of workflows. The results demonstrate that DCP-G can adapt to temporal resource behavior
and avoid performance degradation in dynamically changing grid environments.

The rest of the paper is organized as follows. In the next section, we provide the definition
of workflow scheduling problem in grids. Section 2.2 describes the existing heuristic-based and
metaheuristic-based workflow scheduling techniques utilized in distributed computing systems such
as grids. The proposed DCP-G workflow scheduling algorithm is presented in Section 3. Experiment
details and simulation results are discussed in Section 4. Section 5 presents a case study illustrat-
ing the usefulness of heuristic (DCP)-based dynamic and adaptive workflow scheduling scheme
over metaheuristic-based static scheduling. In Section 6, we outline a hybrid heuristic leverag-
ing proposed DCP-G for hybrid cloud computing environment. Finally, we conclude this paper
in Section 7.

2. BACKGROUND OF WORKFLOW SCHEDULING

2.1. Workflow scheduling problem

In general, a workflow application is represented as a directed acyclic graph (DAG) in which graph
nodes represent tasks and graph edges represent data dependencies among the tasks with weights on
the nodes representing computation complexity and weights on the edges representing communica-
tion volume. Therefore, workflow scheduling problem is usually considered as a special case of the
DAG scheduling problem, which is an Non-deterministic polynomial (NP)-complete problem [7].
Thus, even though the DAG scheduling problem can be solved by using exhaustive search methods,
the complexity of generating the schedule becomes very high.

The overall finish/completion time of an application is usually called the schedule length or
makespan. So, the objective of workflow scheduling techniques is to minimize the makespan of
a parallel application by proper allocation of the tasks to the processors/resources and arrangement
of task execution sequences.

Let us assume workflow W.T ,E/ consists of a set of tasks, T D fT1,T2, : : : ,Tx , ..,Ty ,Tng, and
a set of dependencies among the tasks, E D f< Ta,Tb >, ...,< Tx ,Ty >g, where Tx is the parent
task of Ty . R D fR1,R2, : : : ,Rx , : : : ,Ry ,Rmg is the set of available resources in the computa-
tional grid. Therefore, the workflow scheduling problem is the mapping of workflow tasks to grid
resources (T !R) so that the makespan M is minimized.

Generally, a workflow task is a set of instructions that can be executed on a single processing
element of a computing resource. In a workflow, an entry task does not have any parent task and
an exit task does not have any child task. In addition, a child task cannot be executed until all of
its parent tasks are completed. At any time of scheduling, the task that has all of its parent tasks
finished is called a Ready task.

2.2. Existing workflow scheduling algorithms

As workflow scheduling is an NP-complete problem, we rely on heuristic-based and metaheuristic-
based scheduling strategies to achieve near optimal solutions within polynomial time. In the follow-
ing, we present some of the well-known heuristics and metaheuristics (see Table I) for workflow
scheduling in grid systems.
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2.3. Heuristics

2.3.1. Myopic. Myopic is an individual task scheduling heuristic that is considered as the simplest
scheduling method for scheduling workflow applications because it makes scheduling decisions on
the basis of only one individual task. The myopic algorithm presented in [8] has been implemented
in some grid systems such as Condor DAGMan [9]. It schedules an unmapped ready task, in arbi-
trary order to the resource, which is expected to complete that task earliest, until all tasks have
been scheduled.

2.3.2. Min–min. A list scheduling heuristic prioritizes workflow tasks and schedules the tasks based
on their priorities. Min–Min is a list scheduling heuristic that assigns the task priority on the basis of
its expected completion time (ECT) on a resource. This heuristic organizes the workflow tasks into
several independent task groups and schedules each group of independent tasks iteratively. In every
iteration, it takes the set of all unmapped independent tasks T and generates the minimum ECTs
(MCT) for each task t in T , where MCTt D minr�RECT.t , r/ ; R is the set of resources available,
and ECT.t , r/ is the amount of time resource r takes to execute task t .

Where MCTt Dminr2RECT.t , r/IR is the set of resources available, and ECT.t , r/ is the amount
of time resources r takes to execute task t .

Then, the task having minimum MCT value over all tasks is selected to be scheduled first at this
iteration to the corresponding resource for this MCT (hence, the name is min–min). In this way,
min–min schedules other independent tasks in T and moves to the next iteration until T is empty.

The intuition behind min–min is to consider all unmapped independent tasks during each map-
ping decision, whereas myopic only considers one task at a time. Min–min was proposed by
Maheswaran et al. [10] and has been employed for scheduling workflow tasks in grid projects such
as vGrADS [11] and Pegasus [12].

2.3.3. Max–min. The max–min heuristic is very similar to min–min. The only difference is the
max–min heuristic sets the priority to the task that requires the longest execution time rather than
the shortest execution time. In each iterative step, after obtaining the set of MCT values for all

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1816–1842
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unmapped independent tasks, a task having the maximum MCT is chosen to be scheduled on the
resource, which is expected to complete the task at the earliest time.

Intuitively, max–min attempts to minimize the total workflow execution time by assigning longer
tasks to comparatively best resources. Max–min was also proposed by Maheswaran et al. [10] and
has been used for scheduling workflow tasks in Pegasus [12].

2.3.4. HEFT. Heterogeneous Earliest Finish Time (HEFT) [13] is a well-established list schedul-
ing algorithm, which gives higher priority to the workflow task having higher rank value. This rank
value is calculated by utilizing average execution time for each task and average communication
time between resources of two successive tasks, where the tasks in the CP have comparatively
higher rank values. Then, it sorts the tasks by the decreasing order of their rank values, and the task
with a higher rank value is given higher priority. In the resource selection phase, tasks are scheduled
in the order of their priorities, and each task is assigned to the resource that can complete the task at
the earliest time.

Let us consider jTxj to be the size of task Tx and R be the set of resources available with average
processing power jRj D

Pn
iD1jRi j=n. Thus, the average execution time of the task is defined as

E.Tx/D
jTxj

jRj
(1)

Let T xy be the size of data to be transferred between task Tx and Ty , andR be the set of resources
available with average data processing capacity R D

Pn
iD1Ri=n. Thus, the average data transfer

time for the task is defined as

D.Txy/D
T xy

R
(2)

E.Tx/ and D.Txy/ are used to calculate the rank of a task. For an exit task, the rank value is,

rank.Tx/DE.Tx/ (3)

Now, the rank value of other tasks in the workflow can be computed recursively on the basis of
Equations (1), (2), and (3) and is represented as

rank.Tx/DE.Tx/C max
Ty2succ.Tx/

.D.Txy/C rank.Ty// (4)

Because a workflow is represented as a DAG, the rank values of the tasks are calculated by
traversing the task graph in a breadth-first search (BFS) manner in the reverse direction of task
dependencies (i.e., starting from the exit tasks).

The advantage of using HEFT over min–min or max–min is that while assigning priorities to the
tasks, it considers the entire workflow rather than focusing on only unmapped independent tasks
at each step. HEFT algorithm was proposed by Topcuoglu et al. [13], and it has been used in the
ASKALON workflow manager [8, 14] to provide scheduling for a quantum chemistry application
WIEN2K [2].

Table I. Summary of workflow scheduling algorithms.

Scheduling method Scheduling type Project Organization

Myopic Heuristic Condor DAGMan University of Wisconsin-Madesion, USA
Min–min Heuristic vGrADS Rice University, USA
Max–min Heuristic vGrADS Rice University, USA
HEFT Heuristic ASKALON University of Innsbruck, Austria
GRASP Metaheuristic Pegasus University of Southern California
GA Metaheuristic ASKALON University of Innsbruck, Austria

HEFT, Heterogeneous Earliest Finish Time; GRASP, greedy randomized adaptive search procedure; GA, genetic
algorithm.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1816–1842
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2.4. Metaheuristics

2.4.1. GRASP. Greedy randomized adaptive search procedure (GRASP) [11] is an iterative ran-
domized search technique. In GRASP, a number of iterations are conducted to search a possible
optimal solution for mapping tasks on resources. A solution is generated at each iterative step, and
the best solution is kept as the final schedule. This searching procedure terminates when the specified
termination criterion, such as the completion of a certain number of iterations, is satisfied. GRASP
can generate better schedules than the other scheduling techniques stated previously as it searches
the whole solution space considering entire workflow and available resources.

2.4.2. GA. Similar to GRASP, genetic algorithm (GA) [15] is also a metaheuristic-based scheduling
technique that allows a high-quality solution to be derived from a large search space in polynomial
time by applying the principles of evolution. A GA combines exploitation of best solution from past
searches with the exploration of new regions of solution space. Instead of creating a new solution by
randomized search as in GRASP, GA generates new solutions at each step by randomly modifying
the good solutions generated in previous steps, which results in a better schedule within a less time.
Jia et al. [16] have employed GA-based approach to schedule workflows in grids.

3. DCP-G ALGORITHM FOR WORKFLOW SCHEDULING

For a task graph, the lower and upper bounds of starting time for a task are denoted as the abso-
lute earliest start time (AEST) and the absolute latest start time (ALST), respectively. In the DCP
algorithm [6], the tasks on the CP have equal AEST and ALST values as delaying these tasks affects
the overall execution time for the task graph. The first task on the CP is mapped to the processor
identified for it. This process is repeated until all the tasks in the graph are mapped.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1816–1842
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However, this algorithm is designed for scheduling all the tasks in a task graph with arbitrary
computation and communication times to a multiprocessor system with unlimited number of fully
connected identical processors. But grids [17] are heterogeneous and dynamic environments con-
sisting of computing, storage, and network resources with different capabilities and availability.
Therefore, to work on grids, the DCP algorithm needs to be extended in the following manner:

� For a task, the initial AEST and ALST values are calculated for the resource, which provides
the minimum execution time for the task. The overall objective is to reduce the length of the
CP at every pass. We follow the intuition of the min–min heuristic in which a task is assigned
to the resource that executes it fastest.
� For mapping a task on the CP, all the available resources are considered by DCP-G, as opposed

to the DCP algorithm, which considers only the resources (processors) occupied by the parent
and child tasks. This is because, in the latter case, the execution time is not varied for different
processors, and only the communication time between the tasks could be reduced by assigning
tasks to the same resource. However, in grids, the communication and computation times are
both liable to change because of resource heterogeneity.
� When a task is mapped to a resource, its execution time and data transfer time from the parent

node are updated accordingly. This changes the AEST and ALST of succeeding tasks.

In the following, we discuss some of the principle features of the algorithm. In the first part of
the discussion, we describe the techniques used to calculate AEST and ALST that are necessary for
task selection. Then, we discuss the task selection methodology followed by the resource selection
strategy. The DCP-G scheduling algorithm is formalized and illustrated with an example at the end
of this section. Table II provides some terms and their meanings that are used in the subsequent
discussion.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1816–1842
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Table II. Symbols and their meanings.

Symbol Meaning

AET.t/ Absolute execution time of task t
ADTT.t/ Absolute data transfer time for task t
AEST.t ,R/ Absolute earliest start time of task t on resource R
ALST.t ,R/ Absolute latest start time of task t on resource R
Ct ,tk .Rt ,Rtk / Data transfer time between task t and tk that are scheduled to resources Rt and Rtk

respectively
PC.R/ Processing capacity of resource R
BW.R/ Bandwidth of the network link that connects resource R to Global grid
DCPL Length of a dynamic critical path in a workflow

3.1. Calculation of AEST and ALST in DCP-G

In DCP-G, the start time of a task is not finalized until it is mapped to a resource. Here, we also
introduce two more attributes: the absolute execution time (AET) of a task, which is the minimum
execution time of the task, and absolute data transfer time (ADTT), which is the minimum time
required to transfer the output of the task given its current placement. Initially, AET and ADTT are
calculated as

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1816–1842
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AET.t/D
Task_size.t/

MAXk�ResourceListfPC.Rk/g

ADTT.t/D
Task_output_size.t/

MAXk�ResourceListfBW.Rk/g

where PC.Rk/ and BW.Rk/ are processing capability and transfer capacity (i.e., bandwidth) of
resource Rk , respectively.

Whenever a task t is scheduled to a resource, the values of AET.t/ and ADTT.t/ are updated
accordingly. Therefore, the AEST of a task t on resource R, denoted by AEST.t ,R/ is recursively
defined as

AEST.t ,R/DMAX16k6pfAEST.tk ,Rtk /CAET.tk/CCt ,tk .Rt ,Rtk /g

where t has p parent tasks, tk is the kth parent task, and
AEST.t ,R/D 0 if t is an entry task.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1816–1842
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Ct ,tk .Rt ,Rtk /D 0 if Rt DRtk .
Ct ,tk .Rt ,Rtk /D ADTT.tk/ if t and tk are not scheduled.

Here, the communication time between two tasks is considered to be zero if they are mapped to
the same resource and equal to the ADTT of the parent task if the child is not mapped yet. Using this
definition, the AEST values can be computed by traversing the task graph in a breadth-first manner
beginning from the entry tasks.

Once AESTs of all the tasks are computed, it is possible to calculate DCP length (DCPL), which
is the schedule length of the partially mapped workflow. DCPL can be defined as

DCPLDMAX16i6nfAEST.ti ,Rti /CAET.ti /g

where n is the total number of tasks in the workflow.
After computing the DCPL, the values of ALST can be calculated by traversing the task graph in

a breadth first manner but in the reverse direction. Thus, the ALST of a task t in resourceR, denoted
as ALST(t,R), can be recursively defined as

ALST.t ,R/DMIN16k6cfALST.tk ,Rtk /�AET.t/�Ct ,tk .Rt ,Rtk /g

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1816–1842
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where t has c child tasks, tk is the kth child task, and
ALST.t ,R/D DCPL�AET.t/ if t is an exit task.
Ct ,tk .Rt ,Rtk /D 0 if Rt DRtk .
Ct ,tk .Rt ,Rtk /D ADTT.tk/ if t and tk are not mapped.

3.2. Task selection

During the scheduling process, the CP in the task graph determines the schedule length of the
partially scheduled workflow. Thus, while scheduling, it is necessary to give priority to the tasks
in CP. However, as the scheduling process progresses, the CP can be changed dynamically, that is,

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1816–1842
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a task on a CP at one step may not be on CP at the next step because of the dynamically changing
resource behavior. This is why, in dynamic environment such as grids, CP in the workflow is called
DCP because it is likely to be changed at every step of scheduling.

The tasks on DCP have the same upper and lower bounds of start time, that is, have the same
AEST and ALST. Therefore, a task in DCP-G is considered to be on the CP and called critical task
if its AEST and ALST values are equal. To reduce the value of DCPL at every step, the task selected
for scheduling is the one that is on CP and has no unmapped parent tasks, where ties are broken by
choosing the critical task with lower AEST.

3.3. Resource selection

After identifying a critical task, we need to select an appropriate resource for that task. We select
the resource that provides the minimum execution time for that task. This is discovered by checking
all the available resources for one that minimizes the potential start time of the critical child task
on the same resource, where the critical child task is the one with the least difference of AEST and
ALST among all the child tasks of the critical task (ties are broken by choosing the critical child
task with higher AEST). Finally, the critical task is mapped to the resource that provides the earliest
combined start time.

3.4. Methodology

First, the DCP-G algorithm computes the initial AET, ADTT, AEST, and ALST of all the tasks.
Then, it selects the task with the smallest difference between its AEST and ALST, where ties are
broken by choosing the one with smaller AEST. According to the discussion in Section 3.2, this task
is on DCP and called critical task. The critical child task of critical task is also determined in the
same manner. The algorithm then computes the start time of critical task for all available resources
considering the finish time of all of its parent tasks and searches for a slot starting with this start
time with the duration of its execution time. The resource that gives the earliest start time for both
tct and its critical child task is selected.

After selecting the suitable resource R, the algorithm calculates start time AEST.tct,R/ and
duration AET.tct/ for tct on this resource and updates the actual start and execution times for tct

accordingly. The AEST and ALST values of other tasks are updated at the end of each scheduling
step to determine the next critical task. This process continues until all the tasks in the workflow
are scheduled.

3.5. DCP-G example

Figure 2 illustrates the DCP-G algorithm with a step-by-step explanation of the mapping of tasks in
a sample workflow. The sample workflow consists of five tasks denoted as T0, T1, T2, T3, and T4
with different execution and data transfer requirements. The length and size of the output of each
task shown in Figure 2(a) are measured in million instructions (MI) and gigabytes (GB), respec-
tively. The tasks are to be mapped to two grid resources R1 and R2 with processing capability (PC)
and transfer capacity, that is, bandwidth (BW) as indicated at the bottom of Figure 2.

First, the AET and ADTT values for each task are calculated as shown in Figure 2(a). Then, using
these values, AEST and ALST of all the tasks are calculated according to Section 3.1 (Figure 2(b)).
Because T0, T2, T3, and T4 have equal AEST and ALST, they are on CP with T0 as the highest task.
Hence, T0 is selected as the critical task and mapped to resource R1, which gives T0 the minimum
combined start time. At the end of this step, the schedule length of the workflow (i.e., DCPL) is 890.
Similarly, in Figure 2(c), T2 is selected as the critical task and mapped to R1. As both T0 and T1 are
mapped to R1 and the data transfer time of T0 is now zero, the AEST and ALST of all the tasks are
changed, and the schedule length becomes 850 (Figure 2(d)). In the next step, T3 is mapped to R1
as well, and the DCPL is reduced to 770 as the data transfer time for T2 is zero.

Now, T4 is the only task remaining on the CP (Figure 2(e)). However, one of its parent tasks, T1,
is not mapped yet, and therefore, T1 is selected as the critical task. As T2 and T3 are already mapped
to R1, the start time of T1 on R1 is 700. Therefore, T1 is mapped to R2 as its start and end times on

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1816–1842
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Figure 2. Example of workflow scheduling using dynamic critical path for grids (DCP-G) algorithm.(a)
Calculation of AET and ADTT values for each task; (b) Calculation of AEST and ALST values for each
task; (c) Re-Calculation of AEST, ALST, and DCPL value based on new critical tasks; (d) Re-Calculation of
AEST, ALST, and DCPL value based on new critical tasks; (e) Re-Calculation of AEST, ALST, and DCPL
value based on new critical tasks; (f) Re-Calculation of AEST, ALST, and DCPL value based on new critical
tasks; (g) Re-Calculation of AEST, ALST, and DCPL value based on new critical tasks; (h) Final schedule

generated by DCP-G algorithm.

R2 are 180 and 430, respectively. Finally, when T4 is mapped to R1 (Figure 2(g)), all the tasks have
been mapped, the schedule length cannot be improved any further, and a schedule length of 750 is
obtained. The final schedule generated by DCP-G is shown in a table in Figure 2(h).

4. PERFORMANCE EVALUATION

We evaluate DCP-G by comparing the schedules produced by it against those produced by the
other algorithms described previously for a variety of workflows in a simulated grid environment.
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In this section, first, we describe our simulation methodology and setup and then present the results
of experiments.

4.1. Simulation methodology

We use GridSim [18] toolkit to simulate the application and grid environment for our simu-
lation. The GridSim toolkit allows modeling and simulation of various entities in parallel and
distributed computing environment, such as systems users, applications, resources, and resource
brokers (schedulers) for design and evaluation of scheduling algorithms. It provides a comprehen-
sive facility for creating different types of heterogeneous resources for executing compute and data
intensive applications. A resource can be a single processor or multiprocessor with shared or dis-
tributed memory and managed by time or space-shared schedulers. The processing nodes within
a resource can be homogeneous or heterogeneous in terms of processing capability, configuration,
and availability. We model different entities of GridSim in the following manner.

4.1.1. Workflow model. We implement a workflow generator that can generate various formats
of weighted pseudo-application workflows. The following input parameters are used to create
a workflow.

� N , the total number of tasks in the workflow.
� ˛, the shape parameter represents the ratio of the total number of tasks to the width (i.e.,

maximum number of nodes in a level). Thus, width W D dN=˛e.
� Type of workflow: Our workflow generator can generate three types of workflow, namely

parallel workflow, fork-join workflow, and random workflow.

Parallel workflow: In parallel workflows [19], a group of tasks creates a chain of tasks with
one entry and one exit task; there can be several such chains in one workflow. Here, one task is
dependent on only one task, although the tasks at the head of chains are dependant on the entry task,
and the exit task is dependent on the tasks at the tail of chains. The number of levels in a parallel
workflow can be specified as

Number of levelsD

�
N � 2

W

�

Fork-join workflow: In fork-join workflows [2], forks of tasks are created and then joined. So,
in this kind of workflows, there can be only one entry task and one exit task, but the number of tasks
in each level depends on the total number of tasks and width of that level, W. The number of levels
in a fork-join workflow can be specified as

Number of levelsD

�
N

W C 1

�

Random workflow: In random workflows, the dependency and number of parent tasks of a
task, which equals to the indegree of a node in DAG representation of the workflow, is generated
randomly. Here, the task dependency and the indegree are calculated as

Maximum indegree.Ti /D

�
W

2

�

Minimum indegree.Ti /D 1

Parent.Ti /D fTxjTx�ŒT0....Ti�1�g if Ti is not a root task.

where x is a random number and 0 <D x <D

�
W

2

�
.

Parent .Ti /D f�g if Ti is a root task.

In Figure 3, a sample of each type of workflow is illustrated, where N D 10 and ˛ D 5. In simu-
lation, we use MI to denote the length of tasks and megabyte (MB) to denote the output data size of
each task.
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Figure 3. Three sample workflows: (a) parallel; (b) fork-join; (c) random.

Table III. Resources used for performance evaluation.

Resource name/site Location Number of nodes Single PE rating (MIPS) Mean load

RAL UK 41 1140 0.9
NorduGrid Norway 17 1176 0.9
NIKHEF Netherlands 18 1166 0.9
Milano Italy 7 1000 0.5
Torino Italy 4 1330 0.5
Catania Italy 5 1200 0.6
Padova Italy 13 1000 0.4
Bologna Italy 20 1140 0.8

PE, Processing Element

4.1.2. Resource model. As the execution environment for tasks in scientific workflows is hetero-
geneous, we use heterogeneous resources with different processing capabilities. Here, we choose 8
resources (Table III) from the European DataGrid 1 test bed [20] used for simulation in [21]. The
processing capability of the resources is measured in million instructions per second (MIPS) and
the bandwidth in Megabits per second (Mbps).

4.2. Simulation setup

The workflows for evaluation are generated using the following parameters:

� Type = parallel, fork-join, random
� N D f50, 100, 200, 300g
� ˛ D f10g

Here, the size of each task in the workflow is generated from a uniform distribution between
100, 000 and 500, 000MI, whereas the output data size of each task is also generated from a uniform
distribution between 1 and 5 GB.

For GRASP, we run 600 iterations to map tasks to resources, and then, we select the best schedule
out of the generated schedules. For GA, parameters for various genetic operators, such as selection,
crossover, and mutation, are set using those applied in previous studies [16]. Table IV shows the
values of different parameters used for simulating GA.

4.3. Results and observations

We evaluate the scheduling heuristics on the basis of the total makespan produced and the
time required for scheduling workflows. Makespan is the total time required for executing an
entire workflow.

Two sets of experiments were carried out. In the first set, we consider an ideal case, where the
availability and load of grid resources remain static over time. For this environment, we statically
map tasks to resources according to different strategies and execute tasks accordingly. In the next
set, we evaluate the strategies in a more realistic scenario, where the availability and load of grid
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Table IV. Parameters of genetic algorithm.

Parameter Value/type

Population size 60
Crossover probability 0.7
Swapping mutation probability 0.5
Replacing mutation probability 0.8
Fitness function Makespan of workflow
Selection scheme Elitism Roulette wheel
Stopping condition 300 iterations
Initial individuals Randomly generated

resources vary over time. In this case, the instantaneous load (i.e., number of PEs occupied) for each
resource during the simulation is derived from a Gaussian distribution, as performed in [21].

4.3.1. Execution time in static environment. The graph in Figure 4 plots the execution time of
parallel, fork-join, and random workflows of 50, 100, 200, and 300 tasks for seven workflow
scheduling strategies namely, Myopic, min–min, max–min, HEFT, DCP-G, GRASP, and GA in
static environment.

For random workflow (Figure 4(c)), DCP-G can generate schedules with up to 13% less makespan
than HEFT, which generates better schedule than myopic, min–min, and max–min. Because from
any task in the random workflow there can be multiple paths to an exit node, dynamically assigning
priorities to tasks helps DCP-G to generate better schedules. As GRASP and GA search the entire
solution space for the best schedule, they generate 20� 30% better schedule than DCP-G.

However, the execution time of fork-join workflows (Figure 4(b)) shows a significant difference
between heuristic-based and metaheuristic-based approaches. During the process of task selection
for mapping, heuristic-based approaches do not consider the impact of mapping child tasks. Thus,
all the heuristic-based techniques generate similar schedule with DCP-G being marginally better.
However, in a fork-join workflow, a join task depends on the output of all the forked indepen-
dent tasks that precede it. If this join task is assigned to a resource with low bandwidths to other
resources, increase in data transfer time impacts the makespan adversely. However, metaheuristics
(GA, GRASP) consider the impact of mapping not only the parent fork tasks but also the child join
tasks and are therefore able to generate 40�50% better schedule than DCP, which is the best among
heuristic-based methods.

According to Figure 4(a), the execution time of parallel workflow exhibits a slow exponential
growth with the increase in workflow size. The reason is that, unlike fork-join workflows, the num-
ber of unmapped ready tasks at every step of scheduling in a parallel workflow is always equal to
W, and a task becomes ready as soon as its parent finishes. Thus, when the available resources are
less than unmapped ready tasks, the time spent by some of these tasks in waiting to be scheduled
results in an increase in the total execution time. In case of parallel workflows, DCP-G and GA gen-
erate better schedules than others, and the makespan is reduced by at least 20%. Here, the execution
time of GRASP rises beyond that of DCP-G as the number of candidate solutions for task mapping
increases exponentially with the workflow size. This will be explained further in Section 4.3.3.

4.3.2. Execution time in dynamic environment. As the resource availability changes over time in
dynamic environment, the resource availability information needs to be continuously updated after
a certain period of time, and the tasks have to be remapped if necessary, depending on the updated
availability of resources. Here, we compare the performance of rescheduling using DCP-G and other
heuristic-based approaches against the static schedules generated by the metaheuristics.

Figure 5 shows the execution time of different scheduling techniques in dynamic environment,
where resource information is updated every 50 s. The number of available processing elements and
hence the number of tasks that can start execution in a resource varies with the load on the resource.
However, for GA and GRASP, if a resource is heavily loaded and unavailable, the tasks mapped to
that resource have to wait to be executed. This waiting time consequently impacts the start time of
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Figure 4. Execution time of different types of workflows for static environment. (a) parallel workflow;
(b) fork-join workflow; (c) random workflow. GRASP, greedy randomized adaptive search procedure; HEFT,

Heterogeneous Earliest Finish Time; GA, genetic algorithm; DCP-G, dynamic critical path for grids.

other dependent tasks and increases the makespan. This is reflected in the poor performance of GA
and GRASP in the graphs in Figure 5. Moreover, heuristic-based approaches are able to generate
up to 30% better schedules than these two metaheuristic-based approaches. Among the heuristics,
DCP-G is able to achieve up to 6% better makespan than the others. This is because, in DCP-G,
tasks on the CP waiting to be executed on a heavily loaded resource are rescheduled to resources
with available PEs. This reduces the CP length; thus, the makespan for workflow execution is
also reduced.

It can also be seen that heuristic-based approaches perform better in dynamic than static environ-
ments for the same workflows and experimental setup. This can be attributed to the fact that not only
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Figure 5. Execution time of different types of workflows for dynamic environment. (a) Parallel workflow;
(b) fork-join workflow; (c) random workflow. GRASP, greedy randomized adaptive search procedure; HEFT,

Heterogeneous Earliest Finish Time; GA, genetic algorithm; DCP-G, dynamic critical path for grids.

the load but also the resource availability in dynamic environments is updated regularly. This means
that the heuristics are able to adapt to resources that are more frequently available and therefore
produce better schedules.

4.3.3. Scheduling time. Figure 6 shows the total scheduling time of a workflow for different
scheduling techniques in the case of three types of workflow. Scheduling time is considered as
the scheduling overhead, which constitutes a significant amount of time used by the scheduler to
generate the schedule.
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Figure 6. Scheduling time of different scheduling approaches for various types of workflows. a) Parallel
workflow; (b) fork-join workflow; (c) random workflow. GRASP, greedy randomized adaptive search
procedure; HEFT, Heterogeneous Earliest Finish Time; GA, genetic algorithm; DCP-G, dynamic critical

path for grids.

For the convenience of discussion, the average scheduling time (in milliseconds) for one task
of parallel, fork-join, and random workflows to generate a single schedule for different scheduling
techniques is presented in Table V. To generate a single schedule, myopic, min–min, max–min, and
HEFT require nearly 1 ms for each task irrespective of the workflow size and type, whereas the
average scheduling time of one task for DCP-G is 16–17 ms and does not vary with the workflow
type as the task selection procedure is independent of workflow structure.

Scheduling time using GRASP increases exponentially not only with the increase of tasks in a
workflow but also with the change in workflow structure. In each iteration, GRASP creates restricted
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Table V. Average scheduling time per task.

Scheduling strategy Random workflow(ms) Fork-join workflow(ms) Parallel workflow(ms)

Myopic 1 1 1
Min–min 1 1 1
Max–min 1 1 1
HEFT 1 1 1
DCP-G 17 16 16
GRASP 1180 2840 5720
GA 1940 1780 1750

GRASP, greedy randomized adaptive search procedure; HEFT, Heterogeneous Earliest Finish Time;
GA, genetic algorithm; DCP-G, dynamic critical path for grids.

candidate list (RCL) for each unmapped ready task and then selects a resource for the task randomly.
When the number of tasks increases, RCL increases exponentially resulting in increased scheduling
time. But the size of RCL is also dependent on workflow structure. For example, when a workflow
consists of 300 tasks, parallel and fork-join structures contain 30 tasks in each level, whereas the
random structure contains random number of levels as well as random number of tasks in each level.
Thus, at every step, a parallel workflow has 30 ready tasks, fork-join workflow has maximum 30

ready tasks, and the average number of ready tasks in each level of random workflow is less than
30. Therefore, the scheduling time for random workflow is the lowest, and parallel workflow is the
highest in this case.

However, scheduling time for GA does not change much with the workflow type because it exe-
cutes the same number of genetic operations irrespective of workflow structure. But the size of each
individual in the solution space is equal to the number of tasks in workflow. Thus, scheduling time
increases with the increase in the size of workflow.

Although it is possible to reschedule at regular intervals in GA and GRASP, Table V shows
that the scheduling times for these are at least 100 times as high as DCP-G and increase with the
size of workflow as well. Hence, we did not incorporate rescheduling for GA and GRASP in the
experiments for the dynamic environment.

4.4. Discussion

From Figure 4, it is evident that among the heuristic-based scheduling techniques, DCP-G can
generate better schedule by up to 20% in static environment, especially for random and parallel
workflows, irrespective of workflow size. GA and GRASP can generate more effective schedule
than DCP-G for random and fork-join workflow, but they suffer from the problem of higher schedul-
ing time. In our simulation, for parallel workflow of 300 tasks, DCP-G takes 6 s to map the tasks to
resources, whereas GA and GRASP take 580 and 2076 s, respectively.

In dynamic environment, heuristics-based techniques adapt to the dynamic nature of resources
and can avoid performance degradation. But metaheuristic-based techniques perform worse in this
situation because of the unavailability of mapped resources at certain intervals. However, in dynamic
environment, DCP-G can generate better schedule than other approaches, irrespective of workflow
type and size.

5. CASE STUDY

This section provides a case study of adaptive scheduling and execution of a sample workflow appli-
cation in dynamic grid environment under various temporal resource behaviors. To incorporate the
dynamism and heterogeneity of the environment, we consider different types of resources with dif-
ferent processing capability measured in terms of millions of instructions per second (MIPS) and
network connectivity measured in Mbps, where the size of the tasks and data transfer between the
tasks in the workflow are measured in MI and GB, respectively.
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Figure 7. Testbed setup: (a) sample fork-join workflow; (b) resource connectivity.

We generate the mapping of workflow tasks to grid resources using DCP-G heuristic and GA
metaheuristic, and calculate the total execution time for the following scenario: (i) static envi-
ronment, where the status of resources do not change during workflow execution; (ii) dynamic
environment, where the processing capability of resources changes during execution; and (ii)
dynamic environment, where the network connectivity to resources change during execution.

5.1. Testbed setup

Figure 7(a) presents a sample fork-join workflow with 5 tasks as described by workflow model in
Section 4.1.1. The size of the tasks in workflow and the amount of data to be transferred between
the tasks are also shown in the figure for corresponding tasks and dependencies.

We assume that the resources are volatile in nature, and to improve the reliability, after execution
of a task t , the corresponding resource transfers the generated intermediate data to the centralized
storage or repository, and the resources scheduled to execute dependant tasks of t are required to
download the data from the repository before they can start executing the task. However, if the same
resource executes both t and its dependant tasks, then it does not need to download the data from
the repository.

For this case study, we consider three grid resources distributed globally. Figure 7(b) shows the
connectivity among these resources, where bandwidth of the network connections of these resources
to the centralized storage or repository is also stated in the figure.

5.2. Schedule generation

The total execution time of all the tasks in the workflow for adaptive and nonadaptive scheduling
techniques are illustrated in Figure 8. Figure 8(a) shows the processing capability of R1, R2, and
R3 over time, whereas Figure 8(b) shows the bandwidth of network connections to these resources.
As we can see from these figures, the status of the resources does not change over time because the
environment is static.

On the other hand, Figure 9 presents the scheduling in dynamic environment, where the pro-
cessing capability of R1 drops from 1500 to 750 MIPS for the time duration of 100–800 s.
However, the network connectivity to all resources remains the same for the whole duration of
workflow execution.

Next, Figure 10 illustrates the scheduling in dynamic environment, where network connectivity
to R2 drops from 200 to 50 Mbps for the time duration of 100 to 800 s. However, the processing
capability of all resources remains the same for the whole duration of workflow execution.

5.3. Discussion

This is evident from Figure 8 that if the status of the grid environment does not change, the per-
formance of both adaptive and nonadaptive scheduling techniques is not degraded for workflow
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Figure 8. Workflow execution at static environment, where the status of resources does not change during
workflow execution: (a) processing capacity of resources over time; (b) network connectivity of resources
over time; (c) adaptive scheduling scheme (dynamic critical path for grids); (d) nonadaptive scheduling

scheme (genetic algorithm).
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Figure 9. Workflow execution at dynamic environment, where the processing capability of resources
changes during execution: (a) processing capacity of resources over time; (b) network connectivity of
resources over time; (c) adaptive scheduling scheme (dynamic critical path for grids); (d) nonadaptive

scheduling scheme (genetic algorithm).
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Figure 10. Workflow execution at dynamic environment, where the network connectivity to resources
change during execution: (a) processing capacity of resources over time; (b) network connectivity of
resources over time; (c) adaptive scheduling scheme (dynamic critical path for grids); (d) nonadaptive

scheduling scheme (genetic algorithm).

execution. Thus, both DCP-G and GA (Figure 8(c) and (d), respectively) generate the same schedule
(i.e., task to resources mapping) and take the same time (1004 s) for executing the whole workflow.

However, when processing capability is changed during execution (Figure 9(a)), nonadaptive
scheduling scheme such as GA is not able to address the changing resource behavior (slowdown
of R1’s processing capability for 700 s) into schedule as it sticks to the task-to-resource mapping
generated initially. Thus, the execution completion time is increased to 1340 s (Figure 9(d)). On
the other hand, adaptive scheduling scheme, such as DCP-G, takes scheduling decision dynami-
cally based on the current resource condition. Therefore, it assigns the critical task T3 to the fastest
resource R2 at 100th second and able to complete execution of all the tasks by 1180 s (Figure 9(c)).

Further, if network connectivity to the resources is changed during execution (Figure 10(b) for
R2), GA cannot adapt to the changes because of the aforementioned reason. Whereas DCP-G
assigns T1 to R3 instead of R2 when the bandwith of R2 is reduced at 100th second and avoids
performance degradation. Thus, the execution completion time for DCP-G (1115 s) is less than that
for GA (Figure 10(c) and (d)) in this case as well.

6. HEURISTIC FOR ADAPTIVE WORKFLOW MANAGEMENT IN HYBRID CLOUDS

Cloud computing [22] has emerged as the next generation platform for hosting business and scien-
tific applications. It offers infrastructure, platform, and software as services that are made available
as on-demand and subscription-based services in a pay-as-you-go model to users.

Clouds are mainly deployed in two ways: public cloud and private cloud. Public or external cloud
describes cloud computing in the traditional main stream sense, where services are dynamically pro-
visioned on demand and self-service basis over the Internet and charged by the third party providers
on the basis of utility. Whereas private or internal cloud refers to emulating cloud computing services
on private networks through virtualization. As shown in Figure 11, a hybrid cloud is a combination
of a public and a private cloud aiming at serving the organizational demand of baseline computing
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Figure 11. Hybrid cloud computing environment.

through private cloud and peak computing using public clouds. For example (Figure 11), an organi-
zation may use the private cloud computing services deployed in local clusters for mission-critical
and security-concerned applications, whereas utilize a public cloud service, such as Amazon Simple
Storage Service (Amazon S3), for archiving data as backup.

Cloud computing environments are not only dynamic but also heterogeneous with multiple types
of services (e.g., infrastructure, platform, and software) offered by various service providers (e.g.,
Amazon). Scheduling data analytics workflow applications in such environment (Figures 12 and 13)
requires to address a number of issues, including minimizing cost and time of execution, satisfying
user’s QoS constraints, and considering the temporal behavior of the environment. The majority
of scheduling techniques [23, 24] proposed to solve these issues are based on metaheuristics, which
produce a good schedule given the current state of cloud services and reserve the services in advance
accordingly, thus lack the ability to adapt to the changes in the services during execution.

On the other hand, the heuristic-based scheduling techniques as discussed in this paper are
dynamic in nature and map the workflow tasks to services on-the-fly but lack the ability of
generating schedule considering workflow-level optimization and user QoS constraints, such as
deadline and budget. Thus, it is necessary to develop a hybrid heuristic that can effectively integrate
most of the benefits of both heuristic and metaheuristic-based approaches to optimize execution cost
and time as well as meet the user’s requirements through an adaptive fashion in order to efficiently
manage the dynamism and heterogeneity of the hybrid cloud environment.

Therefore, we propose Adaptive Hybrid Heuristic scheduling algorithm, which is designed to first
generate a task-to-service mapping with minimum execution cost using GA within user’s budget and
deadline as well as satisfying the service and data placement constraints specified by the user. This
initial schedule is then utilized to distribute the workflow-level budget and deadline to task levels.
Finally, the DCP-G heuristic presented in this paper is employed to dynamically schedule the ready
tasks level-by-level on the basis of the initial schedule, tbudget and tdeadline, as well as changed status
of services. Figure 14 presents the flowchart that illustrates various segments and flow of logics in
the algorithm.
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Figure 12. An example of data analytics workflow execution in cloud.
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Figure 13. Layered architecture for workflow execution in hybrid cloud.
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Figure 14. Flowchart for Adaptive Hybrid Heuristic scheduling algorithm.

7. CONCLUSIONS

In this paper, we have defined the workflow scheduling problem in grid computing environment and
discussed the existing well-known workflow scheduling techniques. Nevertheless, these techniques
are static in nature and do not take into account dynamic resource behavior. Therefore, we have pro-
posed a dynamic and adaptive scheduling approach, named DCP-G for scheduling grid workflows.
DCP-G determines an efficient mapping of workflow tasks to grid resources by calculating the CP
in the workflow task graph at every step and assigns priority to a task in the CP that is estimated to
complete earlier. We have compared the performance of DCP-G with other existing heuristic-based
and metaheuristic-based scheduling strategies for different types and sizes of workflows. The results
show that DCP-G can generate better schedule for most of the workflow types, irrespective of their
sizes particularly when the resource availability changes frequently.

In summary, this paper identifies that dynamic scheduling approaches can adapt to temporal
behavior of heterogeneous grid resources and are able to avoid performance degradation by
generating efficient schedules, which is demonstrated by the case study in Section 5.

In the future, we endeavor to evaluate the performance of proposed hybrid heuristic through
extensive simulation and real-world prototype implementation. We plan to devise specific policies
for different workload and particular user requirements in order to better utilize the features of
hybrid cloud computing environment through this evaluation. Moreover, we intend to incorporate
other QoS parameters, such as reliability of a service for task-to-service mapping, by integrating a
multi-objective optimization technique into our proposed algorithm.
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