
Grid agent data-flow execution
Nigel Sim

School of Information Technology/School of Maths and Physical Sciences

James Cook University

The goal of Grid computing is to enable generic, distributed, heterogeneous computing resource to 
be used together to perform arbitrary computing tasks. This goal can be interpreted in a number of
ways, and the functionality can be implemented at a number of levels, with the onus for the 
“Gridification” being implemented somewhere between the operating system and the end 
application. An important aspect of implementing a pure Grid system is to be able to intelligently 
reuse existing software components, with minimum modifications. Further, it should be possible to 
scale the system from individual machines, all the way to commercial supercomputing facilities, 
once again with minimum modification. Finally, any system must support a realistic development 
environment, especially concerning the validation of implemented techniques.

We present an agent based Grid computing platform, which defines the system boundaries and 
responsibilities in such a way to enable the ready reuse and integration of native code libraries into 
a single processing system, which can be hosted in a heterogeneous grid of computers. The
system's primary interface revolves around the R environment for statistical computing. R is widely 
used in the bio-informatics community, and it's use allows us to lever off existing development and 
analysis practises to achieve useful outcomes in terms of re-use, and application speed up.

The agents are written in Java for maximum portability. This is essential to ensuring library 
availability on remote platforms, with Java implementation being packaged and distributed with the 
main Java archive (JAR). The agents handle all aspects of data handing, including input, output and 
data type conversion, and pass computations tasks to external Java classes, and native libraries 
through the Java Native Interface (JNI). This allows the native libraries to only be concerned with 

Figure 1: System architecture. 

Agent

Agent

Agent

SOAP

RMI

RMI

Java

Native 
library

Java Native Interface
(JNI)

Interface adaptor

Algorithm library

Execution action

Work flow engine

A
ge

nt



computations, and not with the format of the input data. This allows these algorithms to be written 
in a clean, generic and portable way, and to also have access to a many data sources and data types 
which may not have been available to the native implementation on its own.

Inter-agent communication is currently handled through RMI/CORBA, allowing for fast 
communications and data transfer. Administration and workflow control is accessed via a SOAP 
interface, allowing a wide range of languages to talk to the system, and for the network to be 
exported as a Grid Service. The system can operate in either an interactive mode, where workflows 
are actively fed into the system by outside processes, or in a batch mode, where the entire workflow 
is delivered upfront, making the system suitable of a variety of processing environments.

Execution is represented as a data-flow graph, which is decomposed distributed among the available 
processing agents. The granularity of the system is automatically adjusted to minimise 
communications overhead, with data location, relative computational speed, and measured link 
capacity being investigated to provide workable heuristics for determining job placement. 

Future plans include the introduction of a hierarchical scheduling model, which will allow multi-
site execution to be performed in an efficient manor by assigning large chunks of the data flow 
graph to individual sites, and allowing local cliques of agents on site to again decompose the chunk 
for processing.




	Grid agent data-flow execution

