
Increasing Scalability and Reliability of Self-Organizing Grids
for Life Science

Milena Radenkovic Bartosz Wietrzyk
School of Computer Science and IT

University of Nottingham
Jubilee Campus, Wollaton Road

Nottingham, NG8 1BB, UK
{mvr, bzw}@cs.nott.ac.uk

Abstract

This paper proposes a novel approach for
increasing the scalability and reliability of self-
organizing Grids comprising a large number of mobile
Grid services and one or more mobile users. The
devices hosting these Grid services are placed on live
animals. The Grid services provide access to the
sensors monitoring the animals’ behavior. Each of
them has a state containing the collected
measurements. The increased scalability is achieved
by application of a multi-hop routing protocol based
on Distributed Hash Tables (DHTs). The reliability
and availability of the state associated with Grid
services is improved by exploiting the awareness of the
underlying DHT routing to replicate the state data. In
this paper we propose our approach and present a
protocol based on our concept of state replication. We
then prove the correctness of our approach by an
extensive simulation comparing its performance with
existing solutions.

1. Introduction

The recent development of mobile network
technologies together with increasing availability of
fast, energy efficient microcontrollers and high
capacity batteries offer numerous incentives for
scientist doing field research involving monitoring of
wild or domestic animals [1]. Providing scientists with
access to field instruments opens new areas for the
Grid technologies. However the mobility of users and
instruments puts numerous challenges in front of the
current Grid middleware which in most cases is meant
to be deployed on the fixed network infrastructure.

In this paper we are interested in a scenario with
Grid services put on wild or domestic animals and one
or more mobile users. These services provide access to
sensors monitoring animals’ activity and are connected
over radio communication. The collected
measurements become a dynamically changing state of
the Grid services. The major challenges include a large
number of network nodes, limited range of their
transceivers, their limited power and possible
dispersion on a large area.

As we proved in [2], to provide a mobile user with
an access to services behind the range of her radio
transceiver we have to use the multi-hop
communication. We need a communication protocol
fulfilling the following requirements: (1) scalability to
the extent of tens or even hundreds of Grid services,
(2) self organization to handle the constantly changing
network topology, (3) high reliability, (4) availability
of state of Grid services, being temporarily out of
range of multi-hop communication.

The most typical solution for providing self-
organization and multi-hop communication in the
mobile ad-hoc networks (MANETs) are multi-hop
routing protocols like DSR [3], AODV [4], DSDV [5],
TORA [6]. Unfortunately they do not provide
sufficient scalability to support large network
topologies [7].

The solution for providing self-organization and
scalability are distributed hash tables (DHTs) like
Chord [8], CAN [9] and Pastry [10] but in their
original form they are targeted at fixed wired
networks. The recent proposal for adapting Pastry for
MANET environment, Ekta [11], is a cross layer
system ranging from the network layer to the
application layer where it exposes the DHT application
programmer interface (API).

Our simulation shows that Ekta does not provide
sufficient reliability for our scenario and does not
address the problem of partial interconnectivity. The
current approach for dealing with partial
interconnectivity is Epidemic Routing [12, 13], which
is not sufficient for us as we require more instant
access to data than it can provide. We cannot use any
existing solution based on exploring mobility [14, 15]
as we cannot enforce any controlled mobility pattern
on the monitored animals. Our solution is to support
Ekta with an adapted data replication initially used in
the PAST file storage system [10].

This paper proposes using Ekta for increasing
scalability of the self-organizing Grid comprising a
large number of mobile Grid services and one or more
mobile users. We improve the reliability achieved in
this approach and address the problem of partial
interconnectivity by providing routing aware data
replication. We propose a novel state retrieval and
replication protocol built on top of Ekta using our
approach.

2. Background

Since our study concentrates on using Ekta [11] as a
routing protocol and adapting the replication strategy
from PAST [16], which is a system based on Pastry
[10] it is relevant to give a brief overview of Pastry,
the PAST’s replication strategy and Ekta.

2.1. Pastry

Pastry [10] is one of several application-level DHT
routing protocols designed for wired networks. In a
Pastry network each node has a unique 128-bit id and
every routed message has an associated 128-bit key.
The objective of Pastry is to route the message to a
node with an id numerically closest to the key
associated with the message.

In a Pastry network comprising N nodes, a message
can be routed to any node in less than steps

on average, where b is a configuration parameter.
Every node in Pastry has state consisting of the leaf
set, routing table and neighborhood set. Two first of
them are used for routing messages and are set of node
ids associated with IP addresses. The routing table is a
two dimensional array having

Nb2log

⎡ ⎤Nb2log rows and

 columns. At a row n are placed ids sharing
first n and only n digits with the present node’s id. The
n+1 digit of an id in the routing table defines the
column where it is stored. Each entry in the routing
table can have more than one id/IP pair. The leaf set

contains numerically closest ids to the present node:
L/2 greater and L/2 smaller, where L is a configuration
parameter.

)12(−b

The routing table and leaf set are used to find a next
node on the route of the message being forwarded.
Such a node should share with the message’s key more
digits than the id of the forwarding node or be at least
numerically closer to the key than the id of the
forwarding node. The nodes located closer to the
forwarding node (in the sense of network distance) are
preferred.

2.2. Replication in PAST

PAST [16] is a file storage system based on Pastry.
A file is stored in k nodes with ids numerically closest
to the key associated with the file. As the nodes’ ids
are assigned randomly, nodes with numerically close
ids are very likely to be well distributed over the
network, which offers good resilience against
hardware problems and heavy network traffic. Since
Pastry tries to route the message to a node with an id
closer to the message’s key, preferring nodes closer (in
the sense of network distance) to the forwarding node,
there is a great possibility that the message will be
forwarded to a nearby node holding the replica. That
increases speed of accessing the file.

2.3. Ekta

Ekta [11] is an efficient adaptation of Pastry to the
MANET environment. It is based on integrating Pastry
with the underlying multi-hop routing protocol. In Ekta
every node has a leaf set and a routing table but every
entry contains apart from the target node’s id, the
whole multi-hop route to this node, not only its IP
address. If a lookup to the leaf set and the routing table
returns a node to which the route is not known the
node performs flooding based route discovery.

The procedure of joining a new node to the Ekta
network is simplified in comparison to Pastry. The new
node a generates its id by hashing its IP address. Then
it floods a Join message, which is replied only by a
node b, which is numerically closest to a. The
JoinComplete message sent by b to a contains the b’s
leaf set. The node b then notifies all the nodes from its
leaf set about the arrival of the node a.

Ekta provides the functionality of a routing protocol
but also provides applications with an API similarly as
Pastry.

3. Data retrieval in DHT-based self-
organizing Grids

3.1. The approach

In this section we describe our approach to data

retrieval and replication in self-organizing Grids. It is
based on using Ekta [11] as a routing protocol and
adding into the protocol stack a new layer between
Ekta and the Grid service application as shown in
Figure 1. Our state retrieval and replication protocol
replicates every period p1 the state of the Grid service
to the k other Grid services with numerically closest
Ekta ids. The ids of these services are obtained from
the underlying Ekta.

Parameter p1 should be set according to the
frequency with which the Grid service’s state changes.
Too short period p1 can cause high power usage, while
too long one can decrease the advantage of using
replication. The value of the parameter k should
depend on the relation between size of the Grid
services’ state and their storage capabilities.

 When a user issues a query to retrieve state of a
selected Grid service, it is sent over a possibly multi-
hop route to the target Grid service. Every forwarding
Grid service checks if it has the required state obtained
by the replication and if so sends it to the user instead
of further forwarding the query.

Ekta

IEEE 802.11

State retrieval and replication

Grid service application
Application layer

Network layer

Link layer

Ekta

IEEE 802.11

State retrieval

Client application

Client Grid service

IPIP

Figure 1. Protocol stack

3.2. The protocol

This section gives details about our state replication

and retrieval protocol. As the protocol uses Ekta as its
routing protocol, we use the following existing
functions from the Ekta’s API:
route(Message, IP Address) – Called by a higher
level protocol to deliver the Message to the particular
IP address
route(Message, Key) – Called by a higher level
protocol to deliver the Message to a node with an id
numerically closest to the Key
deliver(Message) – Called by Ekta to deliver the
Message to a higher level protocol

We have to extend Ekta with the following API
functions:
LeafSet getLeafSet() – Called by a higher level
protocol to obtain the node’s Leaf Set
boolean forward(Message, Source Id, Destination
Id) – Called by Ekta before forwarding the Message to
a next hop. A higher level protocol can cancel the
delivery by returning false.
Our state replication and retrieval protocol provides
following API functions:
query(IP Address, Timestamp) - Called by a client
application to retrieve state from a Grid service with
the given IP Address. Timestamp describes the
maximal age of the state to be delivered.
getData() – Called by our protocol to get data from the
local Grid service
deliver() – Called by our protocol to deliver state data
to the client application which earlier invoked the
query(IP Address) function.

Our protocol works in the following way. Every
period p1 it replicates the state of its local Grid service
to k other Grid services, the ids of which are
numerically closest to the id of the local Grid service.
These ids are obtained from the underlying Ekta by the
getLeafSet() function. Every pair of subsequent
replications is divided by period p2, where p2 is much
smaller than p1. The period p2 is introduced to alleviate
the danger of a flurry of control packets sent due to a
possible sequence of route discoveries. The target Grid
service saves the replicated state together with the
timestamp of the moment when it is received.

Whenever a client application queries state of a
selected Grid service, the query is forwarded by Ekta
over a possibly multi-hop route. At every hop, which is
a Grid service (not a user), our protocol checks if the
current node has the required Grid service state not
older than the timestamp specified by the client
application. If it is the case, instead of further
forwarding the query, the requested state is sent back
to the user over Ekta.

4. Evaluation

4.1. Modeling methodology

This section describes the methodology we used to
evaluate our approach. We simulated one mobile user
and a herd of 70 domestic cows, each with one Grid
service. The simulation area is a square of a 700m
dimension. The cows move according to the random
waypoint model [3]. Their speed varies from 0.6 m/s to
1.0 m/s as in the case of the real cattle [17]. When
changing the direction of their movement they make

stops lasting from 0 to 100 seconds. The user moves
from one of the corners to the opposite one at the
speed of 1.5 m/s, which is an equivalent of a moderate
speed walking [18]. The size of the retrieved Grid
service state data is assumed to be 1KB. The initial
layout of the user and cows is shown in Figure 2.

Figure 2. Initial layout of cows (1-70) and the
user (0)

We use following state retrieval techniques: over

AODV [4] and with our protocol on top of Ekta with
the k parameter (number of replicas) equal to 0 (no
replication), 2, 4 and 8. Initially we use DSR [3]
instead of AODV. However DSR is not scalable
enough for our scenario. During the state retrieval the
massive flurry of control packets crashes the simulator.
This situation is depicted in Figure 3. Finally we
choose AODV [4] for our simulation as it is one of the
most scalable from currently available MANET multi-
hop routing protocols. The sequence of events in our
simulation is presented in Table 1.

We use the ns-2 network simulator [19] and its
AODV implementation. We implement Ekta as a
routing agent and our protocol is implemented as an
agent. We use CanuMobiSim [20] to generate
movement patterns for cows and mhash [21] to
generate Ekta ids from IP addresses. We choose MD5
hashing algorithm [22] because it generates 128-bit
output, which has the length suggested for an Ekta id
[11].

We measure routing overhead, packet delivery ratio
(PDR) and average query time. The routing overhead

is measured as the number of control packets sent by
the routing protocol (AODV or Ekta) and as the total
size of these control packets. In both cases each hop-
wise transmission of a control packet is counted as one
transmission. PDR is defined by the following
formula:

 %100∗=
sentqueries

receivedanswersPDR

The average query time is the average time from
issuing a query to receiving results.

Figure 3. Effects of using DSR protocol –
broadcasts are depicted as circles

Table 1. Events in our simulation
Simulation
time [s]

Event

0.0 Cows start moving and Grid services join
the Ekta network (when applicable) –
one service every 2 seconds

200.0 Replication of services’ state (when
applicable) – a service starts replication
every 1 second

250.0 Starting point for packet statistics
450.0 Failure of the 10% of Grid services

(when applicable)
500.0 The user joins Ekta network (when

applicable)
550.0 The user issues a query (1 query every

0.1 second) and starts moving
1000.0 Simulation end

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 10 20 30 40 50 60 70

N
um

be
r o

f c
on

tro
l p

ac
ke

ts

Queries

(a) Routing overhead

AODV
Ekta

Ekta + replication (2 copies)
Ekta + replication (4 copies)
Ekta + replication (8 copies)

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

P
D

R
 [%

]

Queries

(c) PDR

AODV
Ekta

Ekta + replication (2 copies)
Ekta + replication (4 copies)
Ekta + replication (8 copies)

 0

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70

To
ta

l s
iz

e
of

 c
on

tro
l p

ac
ke

ts
 [K

B
]

Queries

(b) Routing overhead

AODV
Ekta

Ekta + replication (2 copies)
Ekta + replication (4 copies)
Ekta + replication (8 copies)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 10 20 30 40 50 60 70

A
ve

ra
ge

 q
ue

ry
 ti

m
e

[s
]

Queries

(d) Average query time

AODV
Ekta

Ekta + replication (2 copies)
Ekta + replication (4 copies)
Ekta + replication (8 copies)

Figure 4. Simulation results for the case with no failed Grid services

We select a cutoff period of first 250 seconds of the
simulation during which the Grid services’ join the
Ekta network and replicate their state. As mentioned in
Table 1 we use certain time periods to divide similar
actions performed by either Grid services or the user to
avoid a flurry of control packets which is unlikely to
happen in reality. For example the probability that
many Grid services will join the Ekta network in one
point of time is very small.

We perform our simulation for different number of
queries issued by the user. We also consider two cases:
(1) no failures of Grid services (2) failure of 10% of
Grid services. The failures are simulated by moving
cows with the ‘failed’ Grid services out of the
simulation area. The results are presented in Figure 4
and Figure 5.

4.2. Performance results

In this section we discuss the results of our

simulation. As we can see in Figure 4a and Figure 4b,
the number and total size of control packets in case of

AODV grow almost linearly with the number of
queries. This means very high energy cost of queries
and poor scalability. In contrast the number and total
size of control packets in Ekta based communication
grow much slower, which means better scalability.
This is caused by the fact that the route discovery of
AODV is fully on-demand (i.e. it is performed when it
is necessary for routing a packet), while Ekta nodes
have knowledge about the network acquired during the
joining process and replication.

Although Ekta is better suited for our scenario than
AODV, the biggest challenge in using it is clearly
visible in Figure 4c. The reliability of pure Ekta in this
scenario is much lower than in case of AODV.
Fortunately it can be considerably improved by using
the replication technique as we propose but to see the
difference we must use a certain minimal number of
replications (the k parameter). In this case the value of
8 offers a reasonable performance.

Another advantage of using replication is visible in
Figure 4d. Using even a very small number of
replications considerably decreases the retrieval time

in comparison to pure Ekta or AODV. It is due to the
fact that the state of every Grid service is dispersed
over the network nodes so in case of long routes,
which mostly contribute to the high average of query
times, the probability of finding a replica of the
required state before reaching the original is high.

Comparing Figure 4 and Figure 5 we can notice the
difference in dealing with partial interconnectivity
achieved by using replication. The failure of 10% of
Grid services has a considerable impact on PDR in

case of AODV and pure Ekta but Ekta supported even
with a small number of replications remains almost
unaffected. The failure of Grid services does not even
influence the Ekta’s routing overhead.

To summarize, our simulation confirms the
advantage of supporting Ekta with the state replication.
It considerably improves reliability, lowers the effect
of partial interconnectivity and shortens the duration of
the queries.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 10 20 30 40 50 60 70

N
um

be
r o

f c
on

tro
l p

ac
ke

ts

Queries

(a) Routing overhead

AODV
Ekta

Ekta + replication (2 copies)
Ekta + replication (4 copies)
Ekta + replication (8 copies)

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

P
D

R
 [%

]

Queries

(c) PDR

AODV
Ekta

Ekta + replication (2 copies)
Ekta + replication (4 copies)
Ekta + replication (8 copies)

 0

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70

To
ta

l s
iz

e
of

 c
on

tro
l p

ac
ke

ts
 [K

B
]

Queries

(b) Routing overhead

AODV
Ekta

Ekta + replication (2 copies)
Ekta + replication (4 copies)
Ekta + replication (8 copies)

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70

A
ve

ra
ge

 q
ue

ry
 ti

m
e

[s
]

Queries

(d) Average query time

AODV
Ekta

Ekta + replication (2 copies)
Ekta + replication (4 copies)
Ekta + replication (8 copies)

Figure 5. Simulation results for the case with 10% of Grid services failed after the replication

4.3. Further observations

This section presents additional observation we

make analyzing results from our simulations. A large
number of network nodes heavily increases the
overhead caused by flooding, even when it is done in a
controlled manner as in Ekta [11], which borrows the
controlled flooding from DSR [3]. Therefore in larger
MANETs flooding should be avoided, particularly a
case when many nodes perform flooding
simultaneously. This is a reason why in our scenario

differentiating time of Ekta’s node joins, or querying
particular Grid services makes a difference.

Simultaneousness of Ekta’s node join operations
can also degrade the quality of the Ekta’s state,
resulting in longer routes or even failures in packet
delivery to distant nodes. This is caused by the fact
that new nodes retrieve from existing nodes leaf sets,
which are not fully populated, so it is beneficial to
disperse the node join operations over the time.
Fortunately in reality it rarely happens that many nodes
perform the node join operation at the same time.

5. Future work

Domestic cattle kept in large herds tend to break up

into small groups of 10-12 animals, when enough
space is available [17]. Such behavior can be exploited
to select next-hops in a more reliable way and perform
a more effective replication.

The knowledge about which ids belong to the
members of a sub herd (mates) of a cow carrying a
Grid service can be collected without additional data
exchanges. It can be inferred from the long time
statistics collected during analyses of the forwarded or
overheard packets.

Preferring mates in choosing next-hops can improve
the probability of successful delivery of a packet to the
next hop, so delays caused by resending a packet to a
different next-hop can be avoided. This can result in
shorter query times.

State replication can be more effective if the
replication targets are chosen from non-mates, which
are Grid services with which the contact is more likely
to be lost. This results in the higher availability of
states from the Grid services which are beyond the
range of the multi-hop communication. Such an
approach combines the advantages of DHT based
routing like Ekta with Epidemic Routing [12, 13].

As our future research we want to evaluate this
ideas by performing simulations of longer scenarios
and modeling cows’ mobility using the Reference
Point Group Mobility model [23].

6. Conclusions

In this paper we proposed the use of Ekta [11] to

increase the scalability of a self-organizing Grid
comprising services mounted on animals and one or
more mobile users. We proposed a novel approach of
using data replication to increase the availability of
state associated with Grid services and reliability. We
then presented a protocol using our approach and
proved its validity over an extensive simulation.

7. References

[1] P. Zhang, C. M. Sadler, S. A. Lyon, and M. Martonosi,

"Hardware Design Experiences in ZebraNet", In Proc.
of SenSys, Baltimore, Maryland, USA, 2004.

[2] M. Radenkovic and B. Wietrzyk, "Life Science Grid
Middleware in A More Dynamic Environment", In
Proc. of Grid Computing and its Application to Data
Analysis (GADA'05), Ayia Napa, Cyprus, 2005.

[3] D. B. Johnson and D. A. Maltz, "Dynamic Source
Routing in Ad Hoc Wireless Networks", 1996.

[4] C. E. Perkins and E. M. Royer, "Ad-hoc On-Demand
Distance Vector Routing", In Proc. of Second IEEE
Workshop on Mobile Computer Systems and
Applications, 1999.

[5] C. E. Perkins and P. Bhagwat, "Highly Dynamic
Destination-Sequenced Distance-Vector Routing
(DSDV) for Mobile Computers", In Proc. of ACM
SIGCOMM'94, London, England, UK, 1994.

[6] V. D. Park and M. S. Corson, "A Highly Adaptive
Distributed Routing Algorithm for Mobile Wireless
Networks", In Proc. of IEEE INFOCOM'97, 1997.

[7] Y. C. Hu, S. M. Das, and H. Pucha, "Exploiting the
Synergy between Peer-to-Peer and Mobile Ad Hoc
Networks", In Proc. of Hot OS IX, Kauai Marriott
Resort & Beach Club, Lihue, Hawaii, 2003.

[8] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H.
Balakrishnan, "Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications", In Proc. of
SIGCOMM, San Diego, California, USA, 2001.

[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker, "A Scalable Content-Addressable Network",
In Proc. of SIGCOMM, San Diego, California, USA,
2001.

[10] A. Rowstron and P. Druschel, "Pastry: Scalable,
Decentralized Object Location, and Routing for Large-
Scale Peer-to-Peer Systems", In Proc. of Middleware,
Heidelberg, Germany, 2001, pp. 329-350.

[11] H. Pucha, S. M. Das, and Y. C. Hu, "Ekta: An Efficient
DHT Substrate for Distributed Applications in Mobile
Ad Hoc Networks", In Proc. of Sixth IEEE Workshop
on Mobile Computing Systems and Applications,
English Lake District, UK, 2004.

[12] A. Vahdat and D. Becker, "Epidemic Routing for
Partially-Connected Ad Hoc Networks", Duke
University, 2000.

[13] J. A. Davis, A. H. Fagg, and B. N. Levine, "Wearable
Computers as Packet Transport Mechanisms in Highly-
Partitioned Ad-Hoc Networks", In Proc. of ISWC'01,
2001.

[14] Q. Li and D. Rus, "Sending Messages to Mobile Users
in Disconnected Ad-hoc Wireless Networks", In Proc.
of ACM MobiCom, 2000.

[15] W. Zhao, M. Ammar, and E. Zegura, "A Message
Ferrying Approach for Data Delivery in Sparse Mobile
Ad Hoc Networks", In Proc. of MobiHoc’04, Roppongi,
Japan, 2004.

[16] A. Rowstron and P. Druschel, "Storage management
and caching in PAST, a large-scale, persistent peer-to-
peer storage utility", In Proc. of ACM SIGOPS, 2001.

[17] C. J. C. Phillips, Cattle behaviour, Farming Press,
Ipswich, UK, 1993.

[18] S. D. Pinna, Forces and Motion, Raintree Steck-
Vaughn Publishers, Austin, Texas, USA, 1998.

[19] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann,
A. Helmy, P. Huang, S. McCanne, K. Varadhan, Y. Xu,
and H. Yu, "Advances in Network Simulation", IEEE
Computer, 2000, 33(5), pp. 59-67.

[20] I. Stepanov, J. Hahner, C. Becker, J. Tian, and K.
Rothermel, "A Meta-Model and Framework for User
Mobility in Mobile Networks", In Proc. of 11th

International Conference on Networking 2003 (ICON
2003), Sydney, Australia, 2003, pp. 231-238.

[21] N. Mavroyanopoulos and S. Schumann, "mhash".
[22] R. L. Rivest, "Request for Comments: 1321, The MD5

Message-Digest Algorithm", Network Working Group,
1992.

[23] X. Hong, M. Gerla, G. Pei, and C.-C. Chiang, "A Group
Mobility Model for Ad Hoc Wireless Networks", In
Proc. of 2nd ACM international workshop on Modeling,
analysis and simulation of wireless and mobile systems,
Seattle, Washington, United States, 1999, pp. 53 - 60.

	1. Introduction
	2. Background
	2.1. Pastry
	2.2. Replication in PAST
	2.3. Ekta

	3. Data retrieval in DHT-based self-organizing Grids
	3.1. The approach
	3.2. The protocol

	4. Evaluation
	4.1. Modeling methodology
	4.2. Performance results
	4.3. Further observations

	5. Future work
	6. Conclusions
	7. References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

